summaryrefslogtreecommitdiff
path: root/build-aux/measurestack/analyze.py
blob: a93874f0f1cee6dfddf3072a5bb441b4ecd4426d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
# build-aux/measurestack/analyze.py - Analyze stack sizes for compiled objects
#
# Copyright (C) 2024-2025  Luke T. Shumaker <lukeshu@lukeshu.com>
# SPDX-License-Identifier: AGPL-3.0-or-later

import re
import sys
import typing

from . import vcg

# pylint: disable=unused-variable
__all__ = [
    "BaseName",
    "QName",
    "UsageKind",
    "Node",
    "AnalyzeResultVal",
    "AnalyzeResultGroup",
    "AnalyzeResult",
    "analyze",
]

# types ########################################################################


class BaseName:
    # class ##########################################################

    _interned: dict[str, "BaseName"] = {}

    def __new__(cls, content: str) -> "BaseName":
        if ":" in content:
            raise ValueError(f"invalid non-qualified name: {content!r}")
        content = sys.intern(content)
        if content not in cls._interned:
            self = super().__new__(cls)
            self._content = content
            cls._interned[content] = self
        return cls._interned[content]

    # instance #######################################################

    _content: str

    def __str__(self) -> str:
        return self._content

    def __repr__(self) -> str:
        return f"BaseName({self._content!r})"

    def __format__(self, fmt_spec: str, /) -> str:
        return repr(self)

    def __eq__(self, other: typing.Any) -> bool:
        assert isinstance(
            other, BaseName
        ), f"comparing BaseName with {other.__class__.__name__}"
        return self._content == other._content

    def __lt__(self, other: "BaseName") -> bool:
        return self._content < other._content

    def __hash__(self) -> int:
        return self._content.__hash__()

    def as_qname(self) -> "QName":
        return QName(self._content)


class QName:
    # class ##########################################################

    _interned: dict[str, "QName"] = {}

    def __new__(cls, content: str) -> "QName":
        content = sys.intern(content)
        if content not in cls._interned:
            self = super().__new__(cls)
            self._content = content
            self._base = None
            cls._interned[content] = self
        return cls._interned[content]

    # instance #######################################################

    _content: str
    _base: BaseName | None

    def __str__(self) -> str:
        return self._content

    def __repr__(self) -> str:
        return f"QName({self._content!r})"

    def __format__(self, fmt_spec: str, /) -> str:
        return repr(self)

    def __eq__(self, other: typing.Any) -> bool:
        assert isinstance(
            other, QName
        ), f"comparing QName with {other.__class__.__name__}"
        return self._content == other._content

    def __lt__(self, other: "QName") -> bool:
        return self._content < other._content

    def __hash__(self) -> int:
        return self._content.__hash__()

    def base(self) -> BaseName:
        if self._base is None:
            self._base = BaseName(self._content.rsplit(":", 1)[-1].split(".", 1)[0])
        return self._base


UsageKind: typing.TypeAlias = typing.Literal["static", "dynamic", "dynamic,bounded"]


class Node:
    # from .title (`static` and `__weak` functions are prefixed with
    # the compilation unit .c file.  For static functions that's fine,
    # but we'll have to handle it specially for __weak.).
    funcname: QName
    # .label is "{funcname}\n{location}\n{nstatic} bytes (static}\n{ndynamic} dynamic objects"
    location: str
    usage_kind: UsageKind
    nstatic: int
    ndynamic: int

    # edges with .sourcename set to this node, val is if it's
    # OK/expected that the function be missing.
    calls: dict[QName, bool]


class AnalyzeResultVal(typing.NamedTuple):
    nstatic: int
    cnt: int


class AnalyzeResultGroup(typing.NamedTuple):
    rows: dict[QName, AnalyzeResultVal]


class AnalyzeResult(typing.NamedTuple):
    groups: dict[str, AnalyzeResultGroup]
    missing: set[QName]
    dynamic: set[QName]

    included_funcs: set[QName]


class SkipModel(typing.NamedTuple):
    """Running the skipmodel calls `.fn(chain, ...)` with the chain
    consisting of the last `.nchain` items (if .nchain is an int), or
    the chain starting with the *last* occurance of `.nchain` (if
    .nchain is a collection).  If the chain is not that long or does
    not contain a member of the collection, then .fn is not called and
    the call is *not* skipped.

    """

    nchain: int | typing.Collection[BaseName]
    fn: typing.Callable[[typing.Sequence[QName], QName], bool]

    def __call__(self, chain: typing.Sequence[QName], call: QName) -> tuple[bool, int]:
        if isinstance(self.nchain, int):
            if len(chain) >= self.nchain:
                _chain = chain[-self.nchain :]
                return self.fn(_chain, call), len(_chain)
        else:
            for i in reversed(range(len(chain))):
                if chain[i].base() in self.nchain:
                    _chain = chain[i - 1 :]
                    return self.fn(_chain, call), len(_chain)
        return False, 0


class Application(typing.Protocol):
    def extra_nodes(self) -> typing.Collection[Node]: ...
    def indirect_callees(
        self, elem: vcg.VCGElem
    ) -> tuple[typing.Collection[QName], bool]: ...
    def skipmodels(self) -> dict[BaseName, SkipModel]: ...


# code #########################################################################

re_node_label = re.compile(
    r"(?P<funcname>[^\n]+)\n"
    + r"(?P<location>[^\n]+:[0-9]+:[0-9]+)\n"
    + r"(?P<nstatic>[0-9]+) bytes \((?P<usage_kind>static|dynamic|dynamic,bounded)\)\n"
    + r"(?P<ndynamic>[0-9]+) dynamic objects"
    + r"(?:\n.*)*",
    flags=re.MULTILINE,
)


class _Graph:
    graph: dict[QName, Node]
    qualified: dict[BaseName, QName]

    _resolve_cache: dict[QName, QName | None]

    def __init__(self) -> None:
        self._resolve_cache = {}

    def _resolve_funcname(self, funcname: QName) -> QName | None:
        s = str(funcname)
        is_qualified = ":" in s

        # Handle `ld --wrap` functions
        if not is_qualified:
            with_wrap = QName(f"__wrap_{s}")
            if with_wrap in self.graph:
                return with_wrap
            if s.startswith("__real_"):
                without_real = QName(s[len("__real_") :])
                if without_real in self.graph:
                    funcname = without_real

        # Usual case
        if funcname in self.graph:
            return funcname

        # Handle `__weak`/`[[gnu::weak]]` functions
        if not is_qualified:
            return self.qualified.get(BaseName(s))

        return None

    def resolve_funcname(self, funcname: QName) -> QName | None:
        if funcname not in self._resolve_cache:
            self._resolve_cache[funcname] = self._resolve_funcname(funcname)
        return self._resolve_cache[funcname]


def _make_graph(
    ci_fnames: typing.Collection[str],
    app: Application,
) -> _Graph:
    graph: dict[QName, Node] = {}
    qualified: dict[BaseName, set[QName]] = {}

    def handle_elem(elem: vcg.VCGElem) -> None:
        match elem.typ:
            case "node":
                node = Node()
                node.calls = {}
                skip = False
                for k, v in elem.attrs.items():
                    match k:
                        case "title":
                            node.funcname = QName(v)
                        case "label":
                            if elem.attrs.get("shape", "") != "ellipse":
                                m = re_node_label.fullmatch(v)
                                if not m:
                                    raise ValueError(f"unexpected label value {v!r}")
                                node.location = m.group("location")
                                node.usage_kind = typing.cast(
                                    UsageKind, m.group("usage_kind")
                                )
                                node.nstatic = int(m.group("nstatic"))
                                node.ndynamic = int(m.group("ndynamic"))
                        case "shape":
                            if v != "ellipse":
                                raise ValueError(f"unexpected shape value {v!r}")
                            skip = True
                        case _:
                            raise ValueError(f"unknown edge key {k!r}")
                if not skip:
                    if node.funcname in graph:
                        raise ValueError(f"duplicate node {node.funcname}")
                    graph[node.funcname] = node
                    if ":" in str(node.funcname):
                        basename = node.funcname.base()
                        if basename not in qualified:
                            qualified[basename] = set()
                        qualified[basename].add(node.funcname)
            case "edge":
                caller: QName | None = None
                callee: QName | None = None
                for k, v in elem.attrs.items():
                    match k:
                        case "sourcename":
                            caller = QName(v)
                        case "targetname":
                            callee = QName(v)
                        case "label":
                            pass
                        case _:
                            raise ValueError(f"unknown edge key {k!r}")
                if caller is None or callee is None:
                    raise ValueError(f"incomplete edge: {elem.attrs!r}")
                if caller not in graph:
                    raise ValueError(f"unknown caller: {caller}")
                if callee == QName("__indirect_call"):
                    callees, missing_ok = app.indirect_callees(elem)
                    for callee in callees:
                        if callee not in graph[caller].calls:
                            graph[caller].calls[callee] = missing_ok
                else:
                    graph[caller].calls[callee] = False
            case _:
                raise ValueError(f"unknown elem type {elem.typ!r}")

    for ci_fname in ci_fnames:
        with open(ci_fname, "r", encoding="utf-8") as fh:
            for elem in vcg.parse_vcg(fh):
                handle_elem(elem)

    for node in app.extra_nodes():
        if node.funcname in graph:
            raise ValueError(f"duplicate node {node.funcname}")
        graph[node.funcname] = node

    ret = _Graph()
    ret.graph = graph
    ret.qualified = {}
    for bname, qnames in qualified.items():
        if len(qnames) == 1:
            ret.qualified[bname] = next(name for name in qnames)
    return ret


def analyze(
    *,
    ci_fnames: typing.Collection[str],
    app_func_filters: dict[str, typing.Callable[[QName], tuple[int, bool]]],
    app: Application,
    cfg_max_call_depth: int,
) -> AnalyzeResult:
    graphdata = _make_graph(ci_fnames, app)

    missing: set[QName] = set()
    dynamic: set[QName] = set()
    included_funcs: set[QName] = set()

    dbg = False

    track_inclusion: bool = True

    skipmodels = app.skipmodels()
    for name, model in skipmodels.items():
        if isinstance(model.nchain, int):
            assert model.nchain > 1
        else:
            assert len(model.nchain) > 0

    _nstatic_cache: dict[QName, int] = {}

    def _nstatic(chain: list[QName], funcname: QName) -> tuple[int, int]:
        nonlocal dbg
        nonlocal track_inclusion

        assert funcname in graphdata.graph

        node = graphdata.graph[funcname]
        if dbg:
            print(f"//dbg: {'- '*len(chain)}{funcname}\t{node.nstatic}")
        if node.usage_kind == "dynamic" or node.ndynamic > 0:
            dynamic.add(funcname)
        if track_inclusion:
            included_funcs.add(funcname)

        max_call_nstatic = 0
        max_call_nchain = 0

        if node.calls:
            skipmodel = skipmodels.get(funcname.base())
            chain.append(funcname)
            if len(chain) == cfg_max_call_depth:
                raise ValueError(f"max call depth exceeded: {chain}")
            for call_orig_qname, call_missing_ok in node.calls.items():
                skip_nchain = 0
                # 1. Resolve
                call_qname = graphdata.resolve_funcname(call_orig_qname)
                if not call_qname:
                    if skipmodel:
                        skip, _ = skipmodel(chain, call_orig_qname)
                        if skip:
                            if dbg:
                                print(
                                    f"//dbg: {'- '*len(chain)}{call_orig_qname}\tskip missing"
                                )
                            continue
                    if not call_missing_ok:
                        missing.add(call_orig_qname)
                    if dbg:
                        print(f"//dbg: {'- '*len(chain)}{call_orig_qname}\tmissing")
                    continue

                # 2. Skip
                if skipmodel:
                    skip, skip_nchain = skipmodel(chain, call_qname)
                    max_call_nchain = max(max_call_nchain, skip_nchain)
                    if skip:
                        if dbg:
                            print(f"//dbg: {'- '*len(chain)}{call_qname}\tskip")
                        continue

                # 3. Call
                if skip_nchain == 0 and call_qname in _nstatic_cache:
                    max_call_nstatic = max(max_call_nstatic, _nstatic_cache[call_qname])
                else:
                    call_nstatic, call_nchain = _nstatic(chain, call_qname)
                    max_call_nstatic = max(max_call_nstatic, call_nstatic)
                    max_call_nchain = max(max_call_nchain, call_nchain)
                    if skip_nchain == 0 and call_nchain == 0:
                        _nstatic_cache[call_qname] = call_nstatic
            chain.pop()
        return node.nstatic + max_call_nstatic, max(0, max_call_nchain - 1)

    def nstatic(funcname: QName) -> int:
        return _nstatic([], funcname)[0]

    groups: dict[str, AnalyzeResultGroup] = {}
    for grp_name, grp_filter in app_func_filters.items():
        rows: dict[QName, AnalyzeResultVal] = {}
        for funcname in graphdata.graph:
            cnt, track_inclusion = grp_filter(funcname)
            if cnt:
                rows[funcname] = AnalyzeResultVal(nstatic=nstatic(funcname), cnt=cnt)
        groups[grp_name] = AnalyzeResultGroup(rows=rows)

    return AnalyzeResult(
        groups=groups, missing=missing, dynamic=dynamic, included_funcs=included_funcs
    )