# build-aux/measurestack/analyze.py - Analyze stack sizes for compiled objects # # Copyright (C) 2024-2025 Luke T. Shumaker # SPDX-License-Identifier: AGPL-3.0-or-later import re import sys import typing from . import vcg # pylint: disable=unused-variable __all__ = [ "BaseName", "QName", "UsageKind", "Node", "AnalyzeResultVal", "AnalyzeResultGroup", "AnalyzeResult", "analyze", ] # types ######################################################################## class BaseName: # class ########################################################## _interned: dict[str, "BaseName"] = {} def __new__(cls, content: str) -> "BaseName": if ":" in content: raise ValueError(f"invalid non-qualified name: {content!r}") content = sys.intern(content) if content not in cls._interned: self = super().__new__(cls) self._content = content cls._interned[content] = self return cls._interned[content] # instance ####################################################### _content: str def __str__(self) -> str: return self._content def __repr__(self) -> str: return f"BaseName({self._content!r})" def __format__(self, fmt_spec: str, /) -> str: return repr(self) def __eq__(self, other: typing.Any) -> bool: assert isinstance( other, BaseName ), f"comparing BaseName with {other.__class__.__name__}" return self._content == other._content def __lt__(self, other: "BaseName") -> bool: return self._content < other._content def __hash__(self) -> int: return self._content.__hash__() def as_qname(self) -> "QName": return QName(self._content) class QName: # class ########################################################## _interned: dict[str, "QName"] = {} def __new__(cls, content: str) -> "QName": content = sys.intern(content) if content not in cls._interned: self = super().__new__(cls) self._content = content self._base = None cls._interned[content] = self return cls._interned[content] # instance ####################################################### _content: str _base: BaseName | None def __str__(self) -> str: return self._content def __repr__(self) -> str: return f"QName({self._content!r})" def __format__(self, fmt_spec: str, /) -> str: return repr(self) def __eq__(self, other: typing.Any) -> bool: assert isinstance( other, QName ), f"comparing QName with {other.__class__.__name__}" return self._content == other._content def __lt__(self, other: "QName") -> bool: return self._content < other._content def __hash__(self) -> int: return self._content.__hash__() def base(self) -> BaseName: if self._base is None: self._base = BaseName(self._content.rsplit(":", 1)[-1].split(".", 1)[0]) return self._base UsageKind: typing.TypeAlias = typing.Literal["static", "dynamic", "dynamic,bounded"] class Node: # from .title (`static` and `__weak` functions are prefixed with # the compilation unit .c file. For static functions that's fine, # but we'll have to handle it specially for __weak.). funcname: QName # .label is "{funcname}\n{location}\n{nstatic} bytes (static}\n{ndynamic} dynamic objects" location: str usage_kind: UsageKind nstatic: int ndynamic: int # edges with .sourcename set to this node, val is if it's # OK/expected that the function be missing. calls: dict[QName, bool] class AnalyzeResultVal(typing.NamedTuple): nstatic: int cnt: int class AnalyzeResultGroup(typing.NamedTuple): rows: dict[QName, AnalyzeResultVal] class AnalyzeResult(typing.NamedTuple): groups: dict[str, AnalyzeResultGroup] missing: set[QName] dynamic: set[QName] included_funcs: set[QName] class SkipModel(typing.NamedTuple): """Running the skipmodel calls `.fn(chain, ...)` with the chain consisting of the last `.nchain` items (if .nchain is an int), or the chain starting with the *last* occurance of `.nchain` (if .nchain is a collection). If the chain is not that long or does not contain a member of the collection, then .fn is not called and the call is *not* skipped. """ nchain: int | typing.Collection[BaseName] fn: typing.Callable[[typing.Sequence[QName], QName], bool] def __call__(self, chain: typing.Sequence[QName], call: QName) -> tuple[bool, int]: if isinstance(self.nchain, int): if len(chain) >= self.nchain: _chain = chain[-self.nchain :] return self.fn(_chain, call), len(_chain) else: for i in reversed(range(len(chain))): if chain[i].base() in self.nchain: _chain = chain[i - 1 :] return self.fn(_chain, call), len(_chain) return False, 0 class Application(typing.Protocol): def extra_nodes(self) -> typing.Collection[Node]: ... def indirect_callees( self, elem: vcg.VCGElem ) -> tuple[typing.Collection[QName], bool]: ... def skipmodels(self) -> dict[BaseName, SkipModel]: ... # code ######################################################################### re_node_label = re.compile( r"(?P[^\n]+)\n" + r"(?P[^\n]+:[0-9]+:[0-9]+)\n" + r"(?P[0-9]+) bytes \((?Pstatic|dynamic|dynamic,bounded)\)\n" + r"(?P[0-9]+) dynamic objects" + r"(?:\n.*)*", flags=re.MULTILINE, ) class _Graph: graph: dict[QName, Node] qualified: dict[BaseName, QName] _resolve_cache: dict[QName, QName | None] def __init__(self) -> None: self._resolve_cache = {} def _resolve_funcname(self, funcname: QName) -> QName | None: s = str(funcname) is_qualified = ":" in s # Handle `ld --wrap` functions if not is_qualified: with_wrap = QName(f"__wrap_{s}") if with_wrap in self.graph: return with_wrap if s.startswith("__real_"): without_real = QName(s[len("__real_") :]) if without_real in self.graph: funcname = without_real # Usual case if funcname in self.graph: return funcname # Handle `__weak`/`[[gnu::weak]]` functions if not is_qualified: return self.qualified.get(BaseName(s)) return None def resolve_funcname(self, funcname: QName) -> QName | None: if funcname not in self._resolve_cache: self._resolve_cache[funcname] = self._resolve_funcname(funcname) return self._resolve_cache[funcname] def _make_graph( ci_fnames: typing.Collection[str], app: Application, ) -> _Graph: graph: dict[QName, Node] = {} qualified: dict[BaseName, set[QName]] = {} def handle_elem(elem: vcg.VCGElem) -> None: match elem.typ: case "node": node = Node() node.calls = {} skip = False for k, v in elem.attrs.items(): match k: case "title": node.funcname = QName(v) case "label": if elem.attrs.get("shape", "") != "ellipse": m = re_node_label.fullmatch(v) if not m: raise ValueError(f"unexpected label value {v!r}") node.location = m.group("location") node.usage_kind = typing.cast( UsageKind, m.group("usage_kind") ) node.nstatic = int(m.group("nstatic")) node.ndynamic = int(m.group("ndynamic")) case "shape": if v != "ellipse": raise ValueError(f"unexpected shape value {v!r}") skip = True case _: raise ValueError(f"unknown edge key {k!r}") if not skip: if node.funcname in graph: raise ValueError(f"duplicate node {node.funcname}") graph[node.funcname] = node if ":" in str(node.funcname): basename = node.funcname.base() if basename not in qualified: qualified[basename] = set() qualified[basename].add(node.funcname) case "edge": caller: QName | None = None callee: QName | None = None for k, v in elem.attrs.items(): match k: case "sourcename": caller = QName(v) case "targetname": callee = QName(v) case "label": pass case _: raise ValueError(f"unknown edge key {k!r}") if caller is None or callee is None: raise ValueError(f"incomplete edge: {elem.attrs!r}") if caller not in graph: raise ValueError(f"unknown caller: {caller}") if callee == QName("__indirect_call"): callees, missing_ok = app.indirect_callees(elem) for callee in callees: if callee not in graph[caller].calls: graph[caller].calls[callee] = missing_ok else: graph[caller].calls[callee] = False case _: raise ValueError(f"unknown elem type {elem.typ!r}") for ci_fname in ci_fnames: with open(ci_fname, "r", encoding="utf-8") as fh: for elem in vcg.parse_vcg(fh): handle_elem(elem) for node in app.extra_nodes(): if node.funcname in graph: raise ValueError(f"duplicate node {node.funcname}") graph[node.funcname] = node ret = _Graph() ret.graph = graph ret.qualified = {} for bname, qnames in qualified.items(): if len(qnames) == 1: ret.qualified[bname] = next(name for name in qnames) return ret def analyze( *, ci_fnames: typing.Collection[str], app_func_filters: dict[str, typing.Callable[[QName], tuple[int, bool]]], app: Application, cfg_max_call_depth: int, ) -> AnalyzeResult: graphdata = _make_graph(ci_fnames, app) missing: set[QName] = set() dynamic: set[QName] = set() included_funcs: set[QName] = set() dbg = False track_inclusion: bool = True skipmodels = app.skipmodels() for name, model in skipmodels.items(): if isinstance(model.nchain, int): assert model.nchain > 1 else: assert len(model.nchain) > 0 _nstatic_cache: dict[QName, int] = {} def _nstatic(chain: list[QName], funcname: QName) -> tuple[int, int]: nonlocal dbg nonlocal track_inclusion assert funcname in graphdata.graph node = graphdata.graph[funcname] if dbg: print(f"//dbg: {'- '*len(chain)}{funcname}\t{node.nstatic}") if node.usage_kind == "dynamic" or node.ndynamic > 0: dynamic.add(funcname) if track_inclusion: included_funcs.add(funcname) max_call_nstatic = 0 max_call_nchain = 0 if node.calls: skipmodel = skipmodels.get(funcname.base()) chain.append(funcname) if len(chain) == cfg_max_call_depth: raise ValueError(f"max call depth exceeded: {chain}") for call_orig_qname, call_missing_ok in node.calls.items(): skip_nchain = 0 # 1. Resolve call_qname = graphdata.resolve_funcname(call_orig_qname) if not call_qname: if skipmodel: skip, _ = skipmodel(chain, call_orig_qname) if skip: if dbg: print( f"//dbg: {'- '*len(chain)}{call_orig_qname}\tskip missing" ) continue if not call_missing_ok: missing.add(call_orig_qname) if dbg: print(f"//dbg: {'- '*len(chain)}{call_orig_qname}\tmissing") continue # 2. Skip if skipmodel: skip, skip_nchain = skipmodel(chain, call_qname) max_call_nchain = max(max_call_nchain, skip_nchain) if skip: if dbg: print(f"//dbg: {'- '*len(chain)}{call_qname}\tskip") continue # 3. Call if skip_nchain == 0 and call_qname in _nstatic_cache: max_call_nstatic = max(max_call_nstatic, _nstatic_cache[call_qname]) else: call_nstatic, call_nchain = _nstatic(chain, call_qname) max_call_nstatic = max(max_call_nstatic, call_nstatic) max_call_nchain = max(max_call_nchain, call_nchain) if skip_nchain == 0 and call_nchain == 0: _nstatic_cache[call_qname] = call_nstatic chain.pop() return node.nstatic + max_call_nstatic, max(0, max_call_nchain - 1) def nstatic(funcname: QName) -> int: return _nstatic([], funcname)[0] groups: dict[str, AnalyzeResultGroup] = {} for grp_name, grp_filter in app_func_filters.items(): rows: dict[QName, AnalyzeResultVal] = {} for funcname in graphdata.graph: cnt, track_inclusion = grp_filter(funcname) if cnt: rows[funcname] = AnalyzeResultVal(nstatic=nstatic(funcname), cnt=cnt) groups[grp_name] = AnalyzeResultGroup(rows=rows) return AnalyzeResult( groups=groups, missing=missing, dynamic=dynamic, included_funcs=included_funcs )