1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
|
/* coroutine_rpc.h - Simple request/response system for coroutine.{h,c}
*
* Copyright (C) 2024 Luke T. Shumaker <lukeshu@lukeshu.com>
* SPDX-Licence-Identifier: AGPL-3.0-or-later
*/
/**
* The cr_rpc_* macros form a simple request/response mechanism built
* on top of the cr_pause_and_yeild() and cr_unpause() primitives.
*/
#ifndef _COROUTINE_RPC_H_
#define _COROUTINE_RPC_H_
#include <assert.h>
#include "coroutine.h"
/**
* cr_rpc_t(req_t, resp_t) returns the type definition for a
* rcp-channel on which the requester submits a value of type `req_t`
* and the responder responds with a value of type `resp_t`.
*
* There may be multiple concurrent requesters, but only one
* concurrent responder. If you need multiple concurrent responders,
* set up a system of coroutine_chan.h channels.
*/
#define cr_rpc_t(req_t, resp_t) struct { \
cid_t requester, *tail_requester; \
cid_t responder; \
req_t *req_p; \
resp_t *resp_p; \
}
/* These "functions" are preprocessor macros instead of real C
* functions so that the compiler can do type-checking instead of
* having these functions take `void*`. */
/**
* ch_rpc_req(cr_rpc_t(req_t, resp_t) *ch, resp_t *resp, req_t req)
* submits the `req` request to `ch` puts the response in `*resp_p`.
*
* Blocking: Always; until the responder has called both
* cr_rpc_recv_req() and cr_rpc_send_resp().
*/
#define cr_rpc_req(ch, _resp_p, _req) do { \
cid_t next = 0; \
if ((ch)->requester) { \
*((ch)->tail_requester = cr_getcid(); \
(ch)->tail_requester = &next; \
cr_pause_and_yield(); \
} else { \
(ch)->requester = cr_getcid(); \
(ch)->tail_requester = &next; \
} \
assert((ch)->requester == cr_getcid()); \
(ch)->req_p = &(_req); \
(ch)->resp_p = (_resp_p; \
if ((ch)->responder != 0) \
cr_unpause((ch)->responder); \
cr_pause_and_yield(); \
if (next) { \
(ch)->requester = next; \
cr_unpause(next); \
} else { \
(ch)->requester = 0; \
(ch)->tail_requester = NULL; \
}
} while (0)
/**
* cr_rpc_have_req(cr_rpc_t(req_t, resp_t) *ch) allows a responder
* to check whether or not there is a request waiting to be received
* (with cr_rpc_recv_req()) without blocking if there is not.
*
* Blocking: Never.
*/
#define cr_rpc_have_req(ch) ((ch)->req_p != NULL)
/**
* cr_rpc_recv_req(cr_rpc_t(req_t, resp_t) *ch, req_t *req_p) reads
* a request from ch into `*req_p`.
*
* If there is not a pending request on `ch`, blocks until there is.
*
* Blocking: Maybe.
*/
#define cr_rpc_recv_req(ch, _req_p) do { \
(ch)->responder = cr_getcid(); \
if ((ch)->requester == 0) \
cr_pause_and_yield(); \
*(_req_p) = *((ch)->req_p); \
(ch)->req_p = NULL; \
} while (0)
/**
* cr_rpc_send_resp(cr_rpc_t(req_t, resp_t) *ch, resp_t resp) sends
* the reply to the most-recently-read request.
*
* Blocking: Never.
*/
#define cr_rpc_send_resp(ch, _resp) do { \
(ch)->responder = 0; \
*((ch)->resp_p) = (_resp); \
(ch)->resp_p = NULL; \
cr_unpause((ch)->requester); \
} while (0)
#endif /* _COROUTINE_RPC_H_ */
|