1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
|
# build-aux/measurestack/test_app_plugins.py - Tests for app_plugins.py
#
# Copyright (C) 2025 Luke T. Shumaker <lukeshu@lukeshu.com>
# SPDX-License-Identifier: AGPL-3.0-or-later
# pylint: disable=unused-variable
import typing
from . import analyze, app_plugins, util, vcg
from .analyze import BaseName, Node, QName, SkipModel
def aprime_gen(l: int, n: int) -> typing.Sequence[int]:
"""Return an `l`-length sequence of nonnegative
integers such that any `n`-length-or-shorter combination of
members with repeats allowed can be uniquely identified by its
sum.
(If that were "product" instead of "sum", the obvious solution
would be the first `l` primes.)
"""
seq = [1]
while len(seq) < l:
x = seq[-1] * n + 1
seq.append(x)
return seq
def aprime_decompose(
aprimes: typing.Sequence[int], tot: int
) -> tuple[typing.Collection[int], typing.Collection[int]]:
ret_idx = []
ret_val = []
while tot:
idx = max(i for i in range(len(aprimes)) if aprimes[i] <= tot)
val = aprimes[idx]
ret_idx.append(idx)
ret_val.append(val)
tot -= val
return ret_idx, ret_val
def aprime_assert(
aprimes: typing.Sequence[int], act_sum: int, exp_idxs: typing.Collection[int]
) -> None:
act_idxs, act_vals = aprime_decompose(aprimes, act_sum)
exp_sum = sum(aprimes[i] for i in exp_idxs)
# exp_vals = [aprimes[i] for i in exp]
act_str = f"{act_sum}:{[f's[{v}]' for v in sorted(act_idxs)]}"
exp_str = f"{exp_sum}:{[f's[{v}]' for v in sorted(exp_idxs)]}"
if act_str != exp_str:
assert f"act={act_str}" == f"exp={exp_str}"
def test_assert_msg_fail() -> None:
num_funcs = 7
max_call_depth = 7
s = aprime_gen(num_funcs, max_call_depth)
class TestApplication:
def extra_nodes(self) -> typing.Collection[Node]:
# 1 2 3 4 5 6 7 <= call_depth
# - main() s[0]
# - __assert_msg_fail() s[1] *
# - __lm_light_printf() s[3]
# - fmt_vfctprintf() s[6]
# - stdio_putchar() s[5]
# - __assert_msg_fail() s[1] **
# - __lm_abort() s[2]
# - stdio_flush() s[4] (inconsequential)
# - __lm_abort() s[2] (inconsequential)
# ----
# sum(s[i] for i in [0, 1, 3, 6, 5, 1, 2])
ret = [
# main.c
util.synthetic_node("main", s[0], {"__assert_msg_fail"}),
# assert.c
util.synthetic_node(
"__assert_msg_fail", s[1], {"__lm_light_printf", "__lm_abort"}
),
# intercept.c / libfmt/libmisc.c
util.synthetic_node("__lm_abort", s[2]),
util.synthetic_node(
"__lm_light_printf", s[3], {"fmt_vfctprintf", "stdio_flush"}
),
util.synthetic_node("stdio_flush", s[4]),
util.synthetic_node("stdio_putchar", s[5], {"__assert_msg_fail"}),
# printf.c
util.synthetic_node("fmt_vfctprintf", s[6], {"stdio_putchar"}),
]
assert num_funcs == len(s) == len(ret) == len(set(n.nstatic for n in ret))
return ret
def indirect_callees(
self, elem: vcg.VCGElem
) -> tuple[typing.Collection[QName], bool]:
return [], False
def skipmodels(self) -> dict[BaseName, SkipModel]:
models = app_plugins.LibMiscPlugin(arg_c_fnames=[]).skipmodels()
assert BaseName("__assert_msg_fail") in models
orig_model = models[BaseName("__assert_msg_fail")]
def wrapped_model_fn(
chain: typing.Sequence[QName], node: Node, call: QName
) -> bool:
dbgstr = (
("=>".join(str(c) for c in [*chain, node.funcname]))
+ "=?=>"
+ str(call)
)
assert dbgstr in [
"__assert_msg_fail=?=>__lm_light_printf",
"__assert_msg_fail=?=>__lm_abort",
"__assert_msg_fail=>__lm_light_printf=>fmt_vfctprintf=>stdio_putchar=>__assert_msg_fail=?=>__lm_light_printf",
"__assert_msg_fail=>__lm_light_printf=>fmt_vfctprintf=>stdio_putchar=>__assert_msg_fail=?=>__lm_abort",
]
return orig_model.fn(chain, node, call)
models[BaseName("__assert_msg_fail")] = SkipModel(
orig_model.nchain, wrapped_model_fn
)
return models
def test_filter(name: QName) -> tuple[int, bool]:
if name.base() == BaseName("main"):
return 1, True
return 0, False
result = analyze.analyze(
ci_fnames=[],
app_func_filters={
"Main": test_filter,
},
app=TestApplication(),
cfg_max_call_depth=max_call_depth,
)
aprime_assert(
s, result.groups["Main"].rows[QName("main")].nstatic, [0, 1, 3, 6, 5, 1, 2]
)
def test_fct() -> None:
num_funcs = 13
max_call_depth = 12
s = aprime_gen(num_funcs, max_call_depth)
class TestPlugin:
def is_intrhandler(self, name: QName) -> bool:
return False
def init_array(self) -> typing.Collection[QName]:
return []
def extra_includes(self) -> typing.Collection[BaseName]:
return []
def indirect_callees(
self, loc: str, line: str
) -> tuple[typing.Collection[QName], bool] | None:
return None
def skipmodels(self) -> dict[BaseName, analyze.SkipModel]:
return {}
def extra_nodes(self) -> typing.Collection[Node]:
# 1. | a +s[0] | b +s[ 1] | c +s[ 2] |*
# 2. | fmt_vsnprintf +s[3] | vprintf +s[ 4] | __lm_light_printf +s[ 5] |*
# 3. | fmt_vfctprintf +s[6] | fmt_vfctprintf +s[ 6] | fmt_vfctprintf +s[ 6] |
# 4. | fmt_state_putchar +s[7] | fmt_state_putchar +s[ 7] | fmt_state_putchar +s[ 7] |
# 5. | _out_buffer +s[8] | stdio_buffered_printer +s[ 9] | libfmt_light_fct +s[10] |*
# 6. | | __assert_msg_fail +s[11] | __assert_msg_fail +s[11] |
# 7. | | a. __lm_light_printf +s[ 5] | a. __lm_light_printf +s[ 5] |
# 8. | | a. fmt_vfctprintf +s[ 6] | a. fmt_vfctprintf +s[ 6] |
# 9. | | a. fmt_state_putchar +s[ 7] | a. fmt_state_putchar +s[ 7] |
# 10. | | a. libfmt_light_fct +s[10] | a. libfmt_light_fct +s[10] |
# 11. | | a. __assert_msg_fail +s[11] | a. __assert_msg_fail +s[11] |
# 12. | | a. __lm_abort +s[12] | a. __lm_abort +s[12] |
# 7. | | b. __lm_abort | b. __lm_abort |
return [
# main.c
util.synthetic_node("a", s[0], {"fmt_vsnprintf"}), # _out_buffer
util.synthetic_node("b", s[1], {"vprintf"}), # stdio_buffered_printer
util.synthetic_node(
"c", s[2], {"__lm_light_printf"}
), # libfmt_light_printf
# wrappers
util.synthetic_node("fmt_vsnprintf", s[3], {"fmt_vfctprintf"}),
util.synthetic_node("__wrap_vprintf", s[4], {"fmt_vfctprintf"}),
util.synthetic_node("__lm_light_printf", s[5], {"fmt_vfctprintf"}),
# printf.c
util.synthetic_node("fmt_vfctprintf", s[6], {"fmt_state_putchar"}),
util.synthetic_node(
"fmt_state_putchar",
s[7],
{"_out_buffer", "stdio_buffered_printer", "libfmt_light_fct"},
),
# fcts
util.synthetic_node("_out_buffer", s[8]),
util.synthetic_node(
"stdio_buffered_printer", s[9], {"__assert_msg_fail"}
),
util.synthetic_node("libfmt_light_fct", s[10], {"__assert_msg_fail"}),
# assert.c
util.synthetic_node(
"__assert_msg_fail",
s[11],
{"__lm_light_printf", "__lm_abort"},
),
# intercept.c / libfmt/libmisc.c
util.synthetic_node("__lm_abort", s[12]),
]
plugins: list[util.Plugin] = [
TestPlugin(),
app_plugins.LibMiscPlugin(arg_c_fnames=[]),
# fmt_vsnprintf => fct=_out_buffer
# if rp2040:
# __wrap_vprintf => fct=stdio_buffered_printer
# stdio_vprintf => fct=stdio_buffered_printer
# __lm_light_printf => fct=libfmt_light_fct
# if host:
# __lm_printf => fct=libfmt_libc_fct
# __lm_light_printf => fct=libfmt_libc_fct
app_plugins.PicoFmtPlugin("rp2040"),
]
def test_filter(name: QName) -> tuple[int, bool]:
if str(name.base()) in ["a", "b", "c"]:
return 1, True
return 0, False
def _str_location_xform(loc: str) -> str:
return loc
result = analyze.analyze(
ci_fnames=[],
app_func_filters={
"Main": test_filter,
},
app=util.PluginApplication(_str_location_xform, plugins),
cfg_max_call_depth=max_call_depth,
)
aprime_assert(s, result.groups["Main"].rows[QName("a")].nstatic, [0, 3, 6, 7, 8])
aprime_assert(
s,
result.groups["Main"].rows[QName("b")].nstatic,
[1, 4, 6, 7, 9, 11, 5, 6, 7, 10, 11, 12],
)
aprime_assert(
s,
result.groups["Main"].rows[QName("c")].nstatic,
[2, 5, 6, 7, 10, 11, 5, 6, 7, 10, 11, 12],
)
|