1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
|
# build-aux/measurestack/test_app_plugins.py - Tests for app_plugins.py
#
# Copyright (C) 2025 Luke T. Shumaker <lukeshu@lukeshu.com>
# SPDX-License-Identifier: AGPL-3.0-or-later
# pylint: disable=unused-variable
import typing
from . import analyze, app_plugins, util, vcg
from .analyze import BaseName, Node, QName, SkipModel
def aprime_gen(l: int, n: int) -> typing.Sequence[int]:
"""Return an `l`-length sequence of nonnegative
integers such that any `n`-length-or-shorter combination of
members with repeats allowed can be uniquely identified by its
sum.
(If that were "product" instead of "sum", the obvious solution
would be the first `l` primes.)
"""
seq = [1]
while len(seq) < l:
x = seq[-1] * n + 1
seq.append(x)
return seq
def aprime_decompose(
aprimes: typing.Sequence[int], tot: int
) -> tuple[typing.Collection[int], typing.Collection[int]]:
ret_idx = []
ret_val = []
while tot:
idx = max(i for i in range(len(aprimes)) if aprimes[i] <= tot)
val = aprimes[idx]
ret_idx.append(idx)
ret_val.append(val)
tot -= val
return ret_idx, ret_val
def aprime_assert(
aprimes: typing.Sequence[int], act_sum: int, exp_idxs: typing.Collection[int]
) -> None:
act_idxs, act_vals = aprime_decompose(aprimes, act_sum)
exp_sum = sum(aprimes[i] for i in exp_idxs)
# exp_vals = [aprimes[i] for i in exp]
act_str = f"{act_sum}:{[f's[{v}]' for v in sorted(act_idxs)]}"
exp_str = f"{exp_sum}:{[f's[{v}]' for v in sorted(exp_idxs)]}"
if act_str != exp_str:
assert f"act={act_str}" == f"exp={exp_str}"
def test_assert_msg_fail() -> None:
num_funcs = 7
max_call_depth = 7
s = aprime_gen(num_funcs, max_call_depth)
class TestApplication:
def extra_nodes(self) -> typing.Collection[Node]:
# 1 2 3 4 5 6 7 <= call_depth
# - main() s[0]
# - __assert_msg_fail() s[1] *
# - __lm_light_printf() s[3]
# - fmt_vfctprintf() s[6]
# - stdio_putchar() s[5]
# - __assert_msg_fail() s[1] **
# - __lm_abort() s[2]
# - stdio_flush() s[4] (inconsequential)
# - __lm_abort() s[2] (inconsequential)
# ----
# sum(s[i] for i in [0, 1, 3, 6, 5, 1, 2])
ret = [
# main.c
util.synthetic_node("main", s[0], {"__assert_msg_fail"}),
# assert.c
util.synthetic_node(
"__assert_msg_fail", s[1], {"__lm_light_printf", "__lm_abort"}
),
# intercept.c / libfmt/libmisc.c
util.synthetic_node("__lm_abort", s[2]),
util.synthetic_node(
"__lm_light_printf", s[3], {"fmt_vfctprintf", "stdio_flush"}
),
util.synthetic_node("stdio_flush", s[4]),
util.synthetic_node("stdio_putchar", s[5], {"__assert_msg_fail"}),
# printf.c
util.synthetic_node("fmt_vfctprintf", s[6], {"stdio_putchar"}),
]
assert num_funcs == len(s) == len(ret) == len(set(n.nstatic for n in ret))
return ret
def indirect_callees(
self, elem: vcg.VCGElem
) -> tuple[typing.Collection[QName], bool]:
return [], False
def skipmodels(self) -> dict[BaseName, SkipModel]:
models = app_plugins.LibMiscPlugin(arg_c_fnames=[]).skipmodels()
assert BaseName("__assert_msg_fail") in models
orig_model = models[BaseName("__assert_msg_fail")]
def wrapped_model_fn(chain: typing.Sequence[QName], call: QName) -> bool:
assert len(chain) > 1
assert chain[-1] == QName("__assert_msg_fail")
assert (
"=>".join(str(c) for c in chain)
== "__assert_msg_fail=>__lm_light_printf=>fmt_vfctprintf=>stdio_putchar=>__assert_msg_fail"
)
assert call in [QName("__lm_light_printf"), QName("__lm_abort")]
return orig_model.fn(chain, call)
models[BaseName("__assert_msg_fail")] = SkipModel(
orig_model.nchain, wrapped_model_fn
)
return models
def test_filter(name: QName) -> tuple[int, bool]:
if name.base() == BaseName("main"):
return 1, True
return 0, False
result = analyze.analyze(
ci_fnames=[],
app_func_filters={
"Main": test_filter,
},
app=TestApplication(),
cfg_max_call_depth=max_call_depth,
)
aprime_assert(
s, result.groups["Main"].rows[QName("main")].nstatic, [0, 1, 3, 6, 5, 1, 2]
)
|