summaryrefslogtreecommitdiff
path: root/lib/btrfsprogs/btrfsinspect/rebuildnodes/btrees/tree.go
blob: 1fc1f526d8c3ab6ec9fd71541043dede4d1e41ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
// Copyright (C) 2022  Luke Shumaker <lukeshu@lukeshu.com>
//
// SPDX-License-Identifier: GPL-2.0-or-later

package btrees

import (
	"context"
	"fmt"
	"time"

	"github.com/datawire/dlib/dlog"

	"git.lukeshu.com/btrfs-progs-ng/lib/btrfs/btrfsitem"
	"git.lukeshu.com/btrfs-progs-ng/lib/btrfs/btrfsprim"
	"git.lukeshu.com/btrfs-progs-ng/lib/btrfs/btrfsvol"
	pkggraph "git.lukeshu.com/btrfs-progs-ng/lib/btrfsprogs/btrfsinspect/rebuildnodes/graph"
	"git.lukeshu.com/btrfs-progs-ng/lib/btrfsprogs/btrfsinspect/rebuildnodes/keyio"
	"git.lukeshu.com/btrfs-progs-ng/lib/containers"
	"git.lukeshu.com/btrfs-progs-ng/lib/maps"
	"git.lukeshu.com/btrfs-progs-ng/lib/slices"
	"git.lukeshu.com/btrfs-progs-ng/lib/textui"
)

type RebuiltTree struct {
	// static
	ID        btrfsprim.ObjID
	UUID      btrfsprim.UUID
	Parent    *RebuiltTree
	ParentGen btrfsprim.Generation // offset of this tree's root item
	forrest   *RebuiltForrest

	// all leafs (lvl=0) that pass .isOwnerOK, even if not in the tree
	leafToRoots map[btrfsvol.LogicalAddr]containers.Set[btrfsvol.LogicalAddr]
	keys        containers.SortedMap[btrfsprim.Key, keyio.ItemPtr]

	// mutable
	Roots containers.Set[btrfsvol.LogicalAddr]
	Leafs containers.Set[btrfsvol.LogicalAddr]
	Items containers.SortedMap[btrfsprim.Key, keyio.ItemPtr]
}

// initializaton (called by `RebuiltForrest.Tree()`) ///////////////////////////////////////////////////////////////////

func (tree *RebuiltTree) indexLeafs(ctx context.Context) {
	ctx = dlog.WithField(ctx, "btrfsinspect.rebuild-nodes.rebuild.add-tree.substep", "index-nodes")

	nodeToRoots := make(map[btrfsvol.LogicalAddr]containers.Set[btrfsvol.LogicalAddr])

	var stats textui.Portion[int]
	stats.D = len(tree.forrest.graph.Nodes)
	progressWriter := textui.NewProgress[textui.Portion[int]](ctx, dlog.LogLevelInfo, textui.Tunable(1*time.Second))
	progress := func() {
		stats.N = len(nodeToRoots)
		progressWriter.Set(stats)
	}

	progress()
	for _, node := range maps.SortedKeys(tree.forrest.graph.Nodes) {
		tree.indexNode(ctx, node, nodeToRoots, progress, nil)
	}
	progressWriter.Done()

	tree.leafToRoots = make(map[btrfsvol.LogicalAddr]containers.Set[btrfsvol.LogicalAddr])
	for node, roots := range nodeToRoots {
		if tree.forrest.graph.Nodes[node].Level == 0 && len(roots) > 0 {
			tree.leafToRoots[node] = roots
		}
	}
}

func (tree *RebuiltTree) indexNode(ctx context.Context, node btrfsvol.LogicalAddr, index map[btrfsvol.LogicalAddr]containers.Set[btrfsvol.LogicalAddr], progress func(), stack []btrfsvol.LogicalAddr) {
	defer progress()
	if err := ctx.Err(); err != nil {
		return
	}
	if _, done := index[node]; done {
		return
	}
	if slices.Contains(node, stack) {
		// This is a panic because tree.forrest.graph.FinalCheck() should
		// have already checked for loops.
		panic("loop")
	}
	if !tree.isOwnerOK(tree.forrest.graph.Nodes[node].Owner, tree.forrest.graph.Nodes[node].Generation) {
		index[node] = nil
		return
	}

	// tree.leafToRoots
	stack = append(stack, node)
	var roots containers.Set[btrfsvol.LogicalAddr]
	kps := slices.RemoveAllFunc(tree.forrest.graph.EdgesTo[node], func(kp *pkggraph.Edge) bool {
		return !tree.isOwnerOK(tree.forrest.graph.Nodes[kp.FromNode].Owner, tree.forrest.graph.Nodes[kp.FromNode].Generation)
	})
	for _, kp := range kps {
		tree.indexNode(ctx, kp.FromNode, index, progress, stack)
		if len(index[kp.FromNode]) > 0 {
			if roots == nil {
				roots = make(containers.Set[btrfsvol.LogicalAddr])
			}
			roots.InsertFrom(index[kp.FromNode])
		}
	}
	if roots == nil {
		roots = containers.NewSet[btrfsvol.LogicalAddr](node)
	}
	index[node] = roots

	// tree.keys
	for i, key := range tree.forrest.graph.Nodes[node].Items {
		if oldPtr, ok := tree.keys.Load(key); !ok || tree.shouldReplace(oldPtr.Node, node) {
			tree.keys.Store(key, keyio.ItemPtr{
				Node: node,
				Idx:  i,
			})
		}
	}
}

// isOwnerOK returns whether it is permissible for a node with
// .Head.Owner=owner to be in this tree.
func (tree *RebuiltTree) isOwnerOK(owner btrfsprim.ObjID, gen btrfsprim.Generation) bool {
	for {
		if owner == tree.ID {
			return true
		}
		if tree.Parent == nil || gen >= tree.ParentGen {
			return false
		}
		tree = tree.Parent
	}
}

// .AddRoot() //////////////////////////////////////////////////////////////////////////////////////////////////////////

type rootStats struct {
	Leafs         textui.Portion[int]
	AddedItems    int
	ReplacedItems int
}

func (s rootStats) String() string {
	return textui.Sprintf("%v (added %v items, replaced %v items)",
		s.Leafs, s.AddedItems, s.ReplacedItems)
}

// AddRoot adds an additional root node to the tree.  It is useful to
// call .AddRoot() to re-attach part of the tree that has been broken
// off.
func (tree *RebuiltTree) AddRoot(ctx context.Context, rootNode btrfsvol.LogicalAddr) {
	ctx = dlog.WithField(ctx, "btrfsinspect.rebuild-nodes.rebuild.add-root", fmt.Sprintf("tree=%v rootNode=%v", tree.ID, rootNode))
	tree.Roots.Insert(rootNode)

	var stats rootStats
	stats.Leafs.D = len(tree.leafToRoots)
	progressWriter := textui.NewProgress[rootStats](ctx, dlog.LogLevelInfo, textui.Tunable(1*time.Second))
	for i, leaf := range maps.SortedKeys(tree.leafToRoots) {
		stats.Leafs.N = i
		progressWriter.Set(stats)
		if tree.Leafs.Has(leaf) || !tree.leafToRoots[leaf].Has(rootNode) {
			continue
		}
		tree.Leafs.Insert(leaf)
		for j, itemKey := range tree.forrest.graph.Nodes[leaf].Items {
			newPtr := keyio.ItemPtr{
				Node: leaf,
				Idx:  j,
			}
			if oldPtr, exists := tree.Items.Load(itemKey); !exists {
				tree.Items.Store(itemKey, newPtr)
				stats.AddedItems++
			} else if tree.shouldReplace(oldPtr.Node, newPtr.Node) {
				tree.Items.Store(itemKey, newPtr)
				stats.ReplacedItems++
			}
			tree.forrest.cbAddedItem(ctx, tree.ID, itemKey)
			progressWriter.Set(stats)
		}
	}
	stats.Leafs.N = len(tree.leafToRoots)
	progressWriter.Set(stats)
	progressWriter.Done()
}

func (tree *RebuiltTree) shouldReplace(oldNode, newNode btrfsvol.LogicalAddr) bool {
	oldDist, _ := tree.COWDistance(tree.forrest.graph.Nodes[oldNode].Owner)
	newDist, _ := tree.COWDistance(tree.forrest.graph.Nodes[newNode].Owner)
	switch {
	case newDist < oldDist:
		// Replace the old one with the new lower-dist one.
		return true
	case newDist > oldDist:
		// Retain the old lower-dist one.
		return false
	default:
		oldGen := tree.forrest.graph.Nodes[oldNode].Generation
		newGen := tree.forrest.graph.Nodes[newNode].Generation
		switch {
		case newGen > oldGen:
			// Replace the old one with the new higher-gen one.
			return true
		case newGen < oldGen:
			// Retain the old higher-gen one.
			return false
		default:
			// This is a panic because I'm not really sure what the best way to
			// handle this is, and so if this happens I want the program to crash
			// and force me to figure out how to handle it.
			panic(fmt.Errorf("dup nodes in tree=%v: old=%v=%v ; new=%v=%v",
				tree.ID,
				oldNode, tree.forrest.graph.Nodes[oldNode],
				newNode, tree.forrest.graph.Nodes[newNode]))
		}
	}
}

// main public API /////////////////////////////////////////////////////////////////////////////////////////////////////

// COWDistance returns how many COW-snapshots down the 'tree' is from
// the 'parent'.
func (tree *RebuiltTree) COWDistance(parentID btrfsprim.ObjID) (dist int, ok bool) {
	for {
		if parentID == tree.ID {
			return dist, true
		}
		if tree.Parent == nil {
			return 0, false
		}
		tree = tree.Parent
		dist++
	}
}

// Resolve a key to a keyio.ItemPtr.
func (tree *RebuiltTree) Resolve(key btrfsprim.Key) (ptr keyio.ItemPtr, ok bool) {
	return tree.Items.Load(key)
}

// Load reads an item from a tree.
func (tree *RebuiltTree) Load(ctx context.Context, key btrfsprim.Key) (item btrfsitem.Item, ok bool) {
	ptr, ok := tree.Resolve(key)
	if !ok {
		return nil, false
	}
	return tree.forrest.keyIO.ReadItem(ctx, ptr)
}

// Search searches for an item from a tree.
func (tree *RebuiltTree) Search(fn func(btrfsprim.Key) int) (key btrfsprim.Key, ok bool) {
	k, _, ok := tree.Items.Search(func(k btrfsprim.Key, _ keyio.ItemPtr) int {
		return fn(k)
	})
	return k, ok
}

// Search searches for a range of items from a tree.
func (tree *RebuiltTree) SearchAll(fn func(btrfsprim.Key) int) []btrfsprim.Key {
	kvs := tree.Items.SearchAll(func(k btrfsprim.Key, _ keyio.ItemPtr) int {
		return fn(k)
	})
	if len(kvs) == 0 {
		return nil
	}
	ret := make([]btrfsprim.Key, len(kvs))
	for i := range kvs {
		ret[i] = kvs[i].K
	}
	return ret
}

// LeafToRoots returns the list of potential roots (to pass to
// .AddRoot) that include a given leaf-node.
func (tree *RebuiltTree) LeafToRoots(leaf btrfsvol.LogicalAddr) containers.Set[btrfsvol.LogicalAddr] {
	if tree.forrest.graph.Nodes[leaf].Level != 0 {
		panic(fmt.Errorf("should not happen: (tree=%v).LeafToRoots(leaf=%v): not a leaf",
			tree.ID, leaf))
	}
	ret := make(containers.Set[btrfsvol.LogicalAddr])
	for root := range tree.leafToRoots[leaf] {
		if tree.Roots.Has(root) {
			panic(fmt.Errorf("should not happen: (tree=%v).LeafToRoots(leaf=%v): tree contains root=%v but not leaf",
				tree.ID, leaf, root))
		}
		ret.Insert(root)
	}
	if len(ret) == 0 {
		return nil
	}
	return ret
}

// Keys returns a map of all keys in node that would be valid in this tree.
//
// Do not mutate the returned map; it is a pointer to the
// RebuiltTree's internal map!
func (tree *RebuiltTree) Keys() *containers.SortedMap[btrfsprim.Key, keyio.ItemPtr] {
	return &tree.keys
}