summaryrefslogtreecommitdiff
path: root/lib/btrfsprogs/btrfsinspect/rebuildnodes/btrees/rebuilt_btrees.go
blob: 4f0f5d438d7edf680e688ae7675e739e7a3c43a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
// Copyright (C) 2022  Luke Shumaker <lukeshu@lukeshu.com>
//
// SPDX-License-Identifier: GPL-2.0-or-later

package btrees

import (
	"context"
	"fmt"
	"time"

	"github.com/datawire/dlib/dlog"

	"git.lukeshu.com/btrfs-progs-ng/lib/btrfs/btrfsitem"
	"git.lukeshu.com/btrfs-progs-ng/lib/btrfs/btrfsprim"
	"git.lukeshu.com/btrfs-progs-ng/lib/btrfs/btrfstree"
	"git.lukeshu.com/btrfs-progs-ng/lib/btrfs/btrfsvol"
	pkggraph "git.lukeshu.com/btrfs-progs-ng/lib/btrfsprogs/btrfsinspect/rebuildnodes/graph"
	"git.lukeshu.com/btrfs-progs-ng/lib/btrfsprogs/btrfsinspect/rebuildnodes/keyio"
	"git.lukeshu.com/btrfs-progs-ng/lib/containers"
	"git.lukeshu.com/btrfs-progs-ng/lib/maps"
	"git.lukeshu.com/btrfs-progs-ng/lib/slices"
	"git.lukeshu.com/btrfs-progs-ng/lib/textui"
)

type rebuiltTree struct {
	// static
	ID        btrfsprim.ObjID
	UUID      btrfsprim.UUID
	Parent    *rebuiltTree
	ParentGen btrfsprim.Generation // offset of this tree's root item

	// all leafs (lvl=0) that pass .isOwnerOK, even if not in the tree
	leafToRoots map[btrfsvol.LogicalAddr]containers.Set[btrfsvol.LogicalAddr]
	keys        containers.SortedMap[btrfsprim.Key, keyio.ItemPtr]

	// mutable
	Roots containers.Set[btrfsvol.LogicalAddr]
	Leafs containers.Set[btrfsvol.LogicalAddr]
	Items containers.SortedMap[btrfsprim.Key, keyio.ItemPtr]
}

// isOwnerOK returns whether it is permissible for a node with
// .Head.Owner=owner to be in this tree.
func (tree *rebuiltTree) isOwnerOK(owner btrfsprim.ObjID, gen btrfsprim.Generation) bool {
	for {
		if owner == tree.ID {
			return true
		}
		if tree.Parent == nil || gen >= tree.ParentGen {
			return false
		}
		tree = tree.Parent
	}
}

// cowDistance returns how many COW-snapshots down the 'tree' is from
// the 'parent'.
func (tree *rebuiltTree) cowDistance(parentID btrfsprim.ObjID) (dist int, ok bool) {
	for {
		if parentID == tree.ID {
			return dist, true
		}
		if tree.Parent == nil {
			return 0, false
		}
		tree = tree.Parent
		dist++
	}
}

func (tree *rebuiltTree) shouldReplace(graph pkggraph.Graph, oldNode, newNode btrfsvol.LogicalAddr) bool {
	oldDist, _ := tree.cowDistance(graph.Nodes[oldNode].Owner)
	newDist, _ := tree.cowDistance(graph.Nodes[newNode].Owner)
	switch {
	case newDist < oldDist:
		// Replace the old one with the new lower-dist one.
		return true
	case newDist > oldDist:
		// Retain the old lower-dist one.
		return false
	default:
		oldGen := graph.Nodes[oldNode].Generation
		newGen := graph.Nodes[newNode].Generation
		switch {
		case newGen > oldGen:
			// Replace the old one with the new higher-gen one.
			return true
		case newGen < oldGen:
			// Retain the old higher-gen one.
			return false
		default:
			// This is a panic because I'm not really sure what the best way to
			// handle this is, and so if this happens I want the program to crash
			// and force me to figure out how to handle it.
			panic(fmt.Errorf("dup nodes in tree=%v: old=%v=%v ; new=%v=%v",
				tree.ID,
				oldNode, graph.Nodes[oldNode],
				newNode, graph.Nodes[newNode]))
		}
	}
}

// RebuiltTrees is an abstraction for rebuilding and accessing
// potentially broken btrees.
//
// It is conceptually a btrfstree.TreeOperator, and adds similar
// broken-tree handling to btrfsutil.BrokenTrees.  However, the API is
// different thant btrfstree.TreeOperator, and is much more efficient
// than btrfsutil.BrokenTrees.
//
// The efficiency improvements are possible because of the API
// differences, which are necessary for how it is used in
// rebuildnodes:
//
//   - it consumes an already-read graph.Graph instead of reading the
//     graph itself
//
//   - it does not use `btrfstree.TreePath`
//
//   - it does not keep track of errors encountered in a tree
//
// Additionally, it provides some functionality that
// btrfsutil.BrokenTrees does not:
//
//   - it provides a .LeafToRoots() method to advise on what
//     additional roots should be added
//
//   - it provides a .COWDistance() method to compare how related two
//     trees are
//
// A zero RebuiltTrees is invalid; it must be initialized with
// NewRebuiltTrees().
type RebuiltTrees struct {
	// static
	sb    btrfstree.Superblock
	graph pkggraph.Graph
	keyIO *keyio.Handle

	// static callbacks
	cbAddedItem  func(ctx context.Context, tree btrfsprim.ObjID, key btrfsprim.Key)
	cbLookupRoot func(ctx context.Context, tree btrfsprim.ObjID) (offset btrfsprim.Generation, item btrfsitem.Root, ok bool)
	cbLookupUUID func(ctx context.Context, uuid btrfsprim.UUID) (id btrfsprim.ObjID, ok bool)

	// mutable
	trees map[btrfsprim.ObjID]*rebuiltTree
}

// NewRebuiltTrees returns a new RebuiltTrees instance.  All of the
// callbacks must be non-nil.
func NewRebuiltTrees(
	sb btrfstree.Superblock, graph pkggraph.Graph, keyIO *keyio.Handle,
	cbAddedItem func(ctx context.Context, tree btrfsprim.ObjID, key btrfsprim.Key),
	cbLookupRoot func(ctx context.Context, tree btrfsprim.ObjID) (offset btrfsprim.Generation, item btrfsitem.Root, ok bool),
	cbLookupUUID func(ctx context.Context, uuid btrfsprim.UUID) (id btrfsprim.ObjID, ok bool),
) *RebuiltTrees {
	return &RebuiltTrees{
		sb:    sb,
		graph: graph,
		keyIO: keyIO,

		cbAddedItem:  cbAddedItem,
		cbLookupRoot: cbLookupRoot,
		cbLookupUUID: cbLookupUUID,

		trees: make(map[btrfsprim.ObjID]*rebuiltTree),
	}
}

type rootStats struct {
	TreeID   btrfsprim.ObjID
	RootNode btrfsvol.LogicalAddr

	DoneLeafs     int
	TotalLeafs    int
	AddedItems    int
	ReplacedItems int
}

func (s rootStats) String() string {
	return textui.Sprintf("tree %v: adding root node@%v: %v%% (%v/%v) (added %v items, replaced %v items)",
		s.TreeID, s.RootNode,
		int(100*float64(s.DoneLeafs)/float64(s.TotalLeafs)),
		s.DoneLeafs, s.TotalLeafs,
		s.AddedItems, s.ReplacedItems)
}

// AddRoot adds an additional root node to an existing tree.  It is
// useful to call .AddRoot() to re-attach part of the tree that has
// been broken off.
//
// It is invalid (panic) to call AddRoot for a tree without having
// called AddTree first.
func (ts *RebuiltTrees) AddRoot(ctx context.Context, treeID btrfsprim.ObjID, rootNode btrfsvol.LogicalAddr) {
	tree := ts.trees[treeID]
	tree.Roots.Insert(rootNode)

	progressWriter := textui.NewProgress[rootStats](ctx, dlog.LogLevelInfo, 1*time.Second)
	numAdded := 0
	numReplaced := 0
	progress := func(done int) {
		progressWriter.Set(rootStats{
			TreeID:        treeID,
			RootNode:      rootNode,
			DoneLeafs:     done,
			TotalLeafs:    len(tree.leafToRoots),
			AddedItems:    numAdded,
			ReplacedItems: numReplaced,
		})
	}
	for i, leaf := range maps.SortedKeys(tree.leafToRoots) {
		progress(i)
		if tree.Leafs.Has(leaf) || !tree.leafToRoots[leaf].Has(rootNode) {
			continue
		}
		tree.Leafs.Insert(leaf)
		for j, itemKey := range ts.graph.Nodes[leaf].Items {
			newPtr := keyio.ItemPtr{
				Node: leaf,
				Idx:  j,
			}
			if oldPtr, exists := tree.Items.Load(itemKey); !exists {
				tree.Items.Store(itemKey, newPtr)
				numAdded++
			} else if tree.shouldReplace(ts.graph, oldPtr.Node, newPtr.Node) {
				tree.Items.Store(itemKey, newPtr)
				numReplaced++
			}
			ts.cbAddedItem(ctx, treeID, itemKey)
			progress(i)
		}
	}
	progress(len(tree.leafToRoots))
	progressWriter.Done()
}

// AddTree initializes the given tree, returning true if it was able
// to do so, or false if there was a problem and nothing was done.
// The tree is initialized with the normal root node of the tree.
//
// Subsequent calls to AddTree for the same tree are no-ops.
func (ts *RebuiltTrees) AddTree(ctx context.Context, treeID btrfsprim.ObjID) (ok bool) {
	return ts.addTree(ctx, treeID, nil)
}

func (ts *RebuiltTrees) addTree(ctx context.Context, treeID btrfsprim.ObjID, stack []btrfsprim.ObjID) (ok bool) {
	if _, ok := ts.trees[treeID]; ok {
		return true
	}
	if slices.Contains(treeID, stack) {
		return false
	}

	tree := &rebuiltTree{
		ID:    treeID,
		Roots: make(containers.Set[btrfsvol.LogicalAddr]),
		Leafs: make(containers.Set[btrfsvol.LogicalAddr]),
	}
	var root btrfsvol.LogicalAddr
	switch treeID {
	case btrfsprim.ROOT_TREE_OBJECTID:
		root = ts.sb.RootTree
	case btrfsprim.CHUNK_TREE_OBJECTID:
		root = ts.sb.ChunkTree
	case btrfsprim.TREE_LOG_OBJECTID:
		root = ts.sb.LogTree
	case btrfsprim.BLOCK_GROUP_TREE_OBJECTID:
		root = ts.sb.BlockGroupRoot
	default:
		stack := append(stack, treeID)
		if !ts.addTree(ctx, btrfsprim.ROOT_TREE_OBJECTID, stack) {
			return false
		}
		rootOff, rootItem, ok := ts.cbLookupRoot(ctx, treeID)
		if !ok {
			return false
		}
		root = rootItem.ByteNr
		tree.UUID = rootItem.UUID
		if rootItem.ParentUUID != (btrfsprim.UUID{}) {
			tree.ParentGen = rootOff
			if !ts.addTree(ctx, btrfsprim.ROOT_TREE_OBJECTID, stack) {
				return false
			}
			parentID, ok := ts.cbLookupUUID(ctx, rootItem.ParentUUID)
			if !ok {
				return false
			}
			if !ts.addTree(ctx, parentID, append(stack, treeID)) {
				return false
			}
			tree.Parent = ts.trees[parentID]
		}
	}
	tree.indexLeafs(ctx, ts.graph)

	ts.trees[treeID] = tree
	if root != 0 {
		ts.AddRoot(ctx, treeID, root)
	}

	return true
}

type indexStats struct {
	TreeID     btrfsprim.ObjID
	DoneNodes  int
	TotalNodes int
}

func (s indexStats) String() string {
	return textui.Sprintf("tree %v: indexing leaf nodes: %v%% (%v/%v)",
		s.TreeID,
		int(100*float64(s.DoneNodes)/float64(s.TotalNodes)),
		s.DoneNodes, s.TotalNodes)
}

func (tree *rebuiltTree) indexLeafs(ctx context.Context, graph pkggraph.Graph) {
	nodeToRoots := make(map[btrfsvol.LogicalAddr]containers.Set[btrfsvol.LogicalAddr])
	progressWriter := textui.NewProgress[indexStats](ctx, dlog.LogLevelInfo, 1*time.Second)
	progress := func() {
		progressWriter.Set(indexStats{
			TreeID:     tree.ID,
			DoneNodes:  len(nodeToRoots),
			TotalNodes: len(graph.Nodes),
		})
	}
	progress()
	for _, node := range maps.SortedKeys(graph.Nodes) {
		tree.indexNode(graph, node, nodeToRoots, progress, nil)
	}
	progressWriter.Done()

	tree.leafToRoots = make(map[btrfsvol.LogicalAddr]containers.Set[btrfsvol.LogicalAddr])
	for node, roots := range nodeToRoots {
		if graph.Nodes[node].Level == 0 && len(roots) > 0 {
			tree.leafToRoots[node] = roots
		}
	}
}

func (tree *rebuiltTree) indexNode(graph pkggraph.Graph, node btrfsvol.LogicalAddr, index map[btrfsvol.LogicalAddr]containers.Set[btrfsvol.LogicalAddr], progress func(), stack []btrfsvol.LogicalAddr) {
	defer progress()
	if _, done := index[node]; done {
		return
	}
	if slices.Contains(node, stack) {
		// This is a panic because graph.FinalCheck() should
		// have already checked for loops.
		panic("loop")
	}
	if !tree.isOwnerOK(graph.Nodes[node].Owner, graph.Nodes[node].Generation) {
		index[node] = nil
		return
	}

	// tree.leafToRoots
	stack = append(stack, node)
	var roots containers.Set[btrfsvol.LogicalAddr]
	kps := slices.RemoveAllFunc(graph.EdgesTo[node], func(kp *pkggraph.Edge) bool {
		return !tree.isOwnerOK(graph.Nodes[kp.FromNode].Owner, graph.Nodes[kp.FromNode].Generation)
	})
	for _, kp := range kps {
		tree.indexNode(graph, kp.FromNode, index, progress, stack)
		if len(index[kp.FromNode]) > 0 {
			if roots == nil {
				roots = make(containers.Set[btrfsvol.LogicalAddr])
			}
			roots.InsertFrom(index[kp.FromNode])
		}
	}
	if roots == nil {
		roots = containers.NewSet[btrfsvol.LogicalAddr](node)
	}
	index[node] = roots

	// tree.keys
	for i, key := range graph.Nodes[node].Items {
		if oldPtr, ok := tree.keys.Load(key); !ok || tree.shouldReplace(graph, oldPtr.Node, node) {
			tree.keys.Store(key, keyio.ItemPtr{
				Node: node,
				Idx:  i,
			})
		}
	}
}

// Load reads an item from a tree.
//
// It is not nescessary to call AddTree for that tree first; Load will
// call it for you.
func (ts *RebuiltTrees) Load(ctx context.Context, treeID btrfsprim.ObjID, key btrfsprim.Key) (item btrfsitem.Item, ok bool) {
	if !ts.AddTree(ctx, treeID) {
		return nil, false
	}
	ptr, ok := ts.trees[treeID].Items.Load(key)
	if !ok {
		return nil, false
	}
	return ts.keyIO.ReadItem(ptr)
}

// Search searches for an item from a tree.
//
// It is not nescessary to call AddTree for that tree first; Search
// will call it for you.
func (ts *RebuiltTrees) Search(ctx context.Context, treeID btrfsprim.ObjID, fn func(btrfsprim.Key) int) (key btrfsprim.Key, ok bool) {
	if !ts.AddTree(ctx, treeID) {
		return btrfsprim.Key{}, false
	}
	k, _, ok := ts.trees[treeID].Items.Search(func(k btrfsprim.Key, _ keyio.ItemPtr) int {
		return fn(k)
	})
	return k, ok
}

// Search searches for a range of items from a tree.
//
// It is not nescessary to call AddTree for that tree first; SearchAll
// will call it for you.
func (ts *RebuiltTrees) SearchAll(ctx context.Context, treeID btrfsprim.ObjID, fn func(btrfsprim.Key) int) []btrfsprim.Key {
	if !ts.AddTree(ctx, treeID) {
		return nil
	}
	kvs := ts.trees[treeID].Items.SearchAll(func(k btrfsprim.Key, _ keyio.ItemPtr) int {
		return fn(k)
	})
	if len(kvs) == 0 {
		return nil
	}
	ret := make([]btrfsprim.Key, len(kvs))
	for i := range kvs {
		ret[i] = kvs[i].K
	}
	return ret
}

// LeafToRoots returns the list of potential roots (to pass to
// .AddRoot) that include a given leaf-node.
//
// It is not nescessary to call AddTree for the tree first;
// LeafToRoots will call it for you.
func (ts *RebuiltTrees) LeafToRoots(ctx context.Context, treeID btrfsprim.ObjID, leaf btrfsvol.LogicalAddr) containers.Set[btrfsvol.LogicalAddr] {
	if !ts.AddTree(ctx, treeID) {
		return nil
	}
	if ts.graph.Nodes[leaf].Level != 0 {
		panic(fmt.Errorf("should not happen: NodeToRoots(tree=%v, leaf=%v): not a leaf",
			treeID, leaf))
	}
	ret := make(containers.Set[btrfsvol.LogicalAddr])
	for root := range ts.trees[treeID].leafToRoots[leaf] {
		if ts.trees[treeID].Roots.Has(root) {
			panic(fmt.Errorf("should not happen: NodeToRoots(tree=%v, leaf=%v): tree contains root=%v but not leaf",
				treeID, leaf, root))
		}
		ret.Insert(root)
	}
	if len(ret) == 0 {
		return nil
	}
	return ret
}

// Keys returns a map of all keys in node that would be valid in this tree.
//
// It is invalid (panic) to call Keys for a tree without having called
// AddTree first.
func (ts *RebuiltTrees) Keys(treeID btrfsprim.ObjID) *containers.SortedMap[btrfsprim.Key, keyio.ItemPtr] {
	return &ts.trees[treeID].keys
}

// COWDistance returns how many COW-snapshots down from the 'child'
// tree is from the 'parent' tree.
//
// It is invalid (panic) to call COWDistance for a tree without having
// called AddTree for the child first.
func (ts *RebuiltTrees) COWDistance(ctx context.Context, childID, parentID btrfsprim.ObjID) (dist int, ok bool) {
	return ts.trees[childID].cowDistance(parentID)
}

// ListRoots returns a listing of all initialized trees and their root
// nodes.
//
// Do not mutate the set of roots for a tree; it is a pointer to the
// RebuiltTrees' internal set!
func (ts *RebuiltTrees) ListRoots() map[btrfsprim.ObjID]containers.Set[btrfsvol.LogicalAddr] {
	ret := make(map[btrfsprim.ObjID]containers.Set[btrfsvol.LogicalAddr], len(ts.trees))
	for treeID := range ts.trees {
		ret[treeID] = ts.trees[treeID].Roots
	}
	return ret
}