summaryrefslogtreecommitdiff
path: root/lib/btrfsprogs/btrfsinspect/rebuildnodes/btrees/rebuilt_btrees.go
diff options
context:
space:
mode:
Diffstat (limited to 'lib/btrfsprogs/btrfsinspect/rebuildnodes/btrees/rebuilt_btrees.go')
-rw-r--r--lib/btrfsprogs/btrfsinspect/rebuildnodes/btrees/rebuilt_btrees.go491
1 files changed, 491 insertions, 0 deletions
diff --git a/lib/btrfsprogs/btrfsinspect/rebuildnodes/btrees/rebuilt_btrees.go b/lib/btrfsprogs/btrfsinspect/rebuildnodes/btrees/rebuilt_btrees.go
new file mode 100644
index 0000000..50c75a4
--- /dev/null
+++ b/lib/btrfsprogs/btrfsinspect/rebuildnodes/btrees/rebuilt_btrees.go
@@ -0,0 +1,491 @@
+// Copyright (C) 2022 Luke Shumaker <lukeshu@lukeshu.com>
+//
+// SPDX-License-Identifier: GPL-2.0-or-later
+
+package btrees
+
+import (
+ "context"
+ "fmt"
+ "time"
+
+ "github.com/datawire/dlib/dlog"
+
+ "git.lukeshu.com/btrfs-progs-ng/lib/btrfs/btrfsitem"
+ "git.lukeshu.com/btrfs-progs-ng/lib/btrfs/btrfsprim"
+ "git.lukeshu.com/btrfs-progs-ng/lib/btrfs/btrfstree"
+ "git.lukeshu.com/btrfs-progs-ng/lib/btrfs/btrfsvol"
+ pkggraph "git.lukeshu.com/btrfs-progs-ng/lib/btrfsprogs/btrfsinspect/rebuildnodes/graph"
+ "git.lukeshu.com/btrfs-progs-ng/lib/btrfsprogs/btrfsinspect/rebuildnodes/keyio"
+ "git.lukeshu.com/btrfs-progs-ng/lib/containers"
+ "git.lukeshu.com/btrfs-progs-ng/lib/maps"
+ "git.lukeshu.com/btrfs-progs-ng/lib/slices"
+ "git.lukeshu.com/btrfs-progs-ng/lib/textui"
+)
+
+type rebuiltTree struct {
+ // static
+ ID btrfsprim.ObjID
+ UUID btrfsprim.UUID
+ Parent *rebuiltTree
+ ParentGen btrfsprim.Generation // offset of this tree's root item
+
+ // all leafs (lvl=0) that pass .isOwnerOK, even if not in the tree
+ leafToRoots map[btrfsvol.LogicalAddr]containers.Set[btrfsvol.LogicalAddr]
+ keys containers.SortedMap[btrfsprim.Key, keyio.ItemPtr]
+
+ // mutable
+ Roots containers.Set[btrfsvol.LogicalAddr]
+ Leafs containers.Set[btrfsvol.LogicalAddr]
+ Items containers.SortedMap[btrfsprim.Key, keyio.ItemPtr]
+}
+
+// isOwnerOK returns whether it is permissible for a node with
+// .Head.Owner=owner to be in this tree.
+func (tree *rebuiltTree) isOwnerOK(owner btrfsprim.ObjID, gen btrfsprim.Generation) bool {
+ for {
+ if owner == tree.ID {
+ return true
+ }
+ if tree.Parent == nil || gen >= tree.ParentGen {
+ return false
+ }
+ tree = tree.Parent
+ }
+}
+
+// cowDistance returns how many COW-snapshots down the 'tree' is from
+// the 'parent'.
+func (tree *rebuiltTree) cowDistance(parentID btrfsprim.ObjID) (dist int, ok bool) {
+ for {
+ if parentID == tree.ID {
+ return dist, true
+ }
+ if tree.Parent == nil {
+ return 0, false
+ }
+ tree = tree.Parent
+ dist++
+ }
+}
+
+func (tree *rebuiltTree) shouldReplace(graph pkggraph.Graph, oldNode, newNode btrfsvol.LogicalAddr) bool {
+ oldDist, _ := tree.cowDistance(graph.Nodes[oldNode].Owner)
+ newDist, _ := tree.cowDistance(graph.Nodes[newNode].Owner)
+ switch {
+ case newDist < oldDist:
+ // Replace the old one with the new lower-dist one.
+ return true
+ case newDist > oldDist:
+ // Retain the old lower-dist one.
+ return false
+ default:
+ oldGen := graph.Nodes[oldNode].Generation
+ newGen := graph.Nodes[newNode].Generation
+ switch {
+ case newGen > oldGen:
+ // Replace the old one with the new higher-gen one.
+ return true
+ case newGen < oldGen:
+ // Retain the old higher-gen one.
+ return false
+ default:
+ // This is a panic because I'm not really sure what the best way to
+ // handle this is, and so if this happens I want the program to crash
+ // and force me to figure out how to handle it.
+ panic(fmt.Errorf("dup nodes in tree=%v: old=%v=%v ; new=%v=%v",
+ tree.ID,
+ oldNode, graph.Nodes[oldNode],
+ newNode, graph.Nodes[newNode]))
+ }
+ }
+}
+
+// RebuiltTrees is an abstraction for rebuilding and accessing
+// potentially broken btrees.
+//
+// It is conceptually a btrfstree.TreeOperator, and adds similar
+// broken-tree handling to btrfsutil.BrokenTrees. However, the API is
+// different thant btrfstree.TreeOperator, and is much more efficient
+// than btrfsutil.BrokenTrees.
+//
+// The efficiency improvements are possible because of the API
+// differences, which are necessary for how it is used in
+// rebuildnodes:
+//
+// - it consumes an already-read graph.Graph instead of reading the
+// graph itself
+//
+// - it does not use `btrfstree.TreePath`
+//
+// - it does not keep track of errors encountered in a tree
+//
+// Additionally, it provides some functionality that
+// btrfsutil.BrokenTrees does not:
+//
+// - it provides a .LeafToRoots() method to advise on what
+// additional roots should be added
+//
+// - it provides a .COWDistance() method to compare how related two
+// trees are
+//
+// A zero RebuiltTrees is invalid; it must be initialized with
+// NewRebuiltTrees().
+type RebuiltTrees struct {
+ // static
+ sb btrfstree.Superblock
+ graph pkggraph.Graph
+ keyIO *keyio.Handle
+
+ // static callbacks
+ cbAddedItem func(ctx context.Context, tree btrfsprim.ObjID, key btrfsprim.Key)
+ cbLookupRoot func(ctx context.Context, tree btrfsprim.ObjID) (offset btrfsprim.Generation, item btrfsitem.Root, ok bool)
+ cbLookupUUID func(ctx context.Context, uuid btrfsprim.UUID) (id btrfsprim.ObjID, ok bool)
+
+ // mutable
+ trees map[btrfsprim.ObjID]*rebuiltTree
+}
+
+// NewRebuiltTrees returns a new RebuiltTrees instance. All of the
+// callbacks must be non-nil.
+func NewRebuiltTrees(
+ sb btrfstree.Superblock, graph pkggraph.Graph, keyIO *keyio.Handle,
+ cbAddedItem func(ctx context.Context, tree btrfsprim.ObjID, key btrfsprim.Key),
+ cbLookupRoot func(ctx context.Context, tree btrfsprim.ObjID) (offset btrfsprim.Generation, item btrfsitem.Root, ok bool),
+ cbLookupUUID func(ctx context.Context, uuid btrfsprim.UUID) (id btrfsprim.ObjID, ok bool),
+) *RebuiltTrees {
+ return &RebuiltTrees{
+ sb: sb,
+ graph: graph,
+ keyIO: keyIO,
+
+ cbAddedItem: cbAddedItem,
+ cbLookupRoot: cbLookupRoot,
+ cbLookupUUID: cbLookupUUID,
+
+ trees: make(map[btrfsprim.ObjID]*rebuiltTree),
+ }
+}
+
+type rootStats struct {
+ TreeID btrfsprim.ObjID
+ RootNode btrfsvol.LogicalAddr
+
+ DoneLeafs int
+ TotalLeafs int
+ AddedItems int
+ ReplacedItems int
+}
+
+func (s rootStats) String() string {
+ return fmt.Sprintf("tree %v: adding root node@%v: %v%% (%v/%v) (added %v items, replaced %v items)",
+ s.TreeID, s.RootNode,
+ int(100*float64(s.DoneLeafs)/float64(s.TotalLeafs)),
+ s.DoneLeafs, s.TotalLeafs,
+ s.AddedItems, s.ReplacedItems)
+}
+
+// AddRoot adds an additional root node to an existing tree. It is
+// useful to call .AddRoot() to re-attach part of the tree that has
+// been broken off.
+//
+// It is invalid (panic) to call AddRoot for a tree without having
+// called AddTree first.
+func (ts *RebuiltTrees) AddRoot(ctx context.Context, treeID btrfsprim.ObjID, rootNode btrfsvol.LogicalAddr) {
+ tree := ts.trees[treeID]
+ tree.Roots.Insert(rootNode)
+
+ progressWriter := textui.NewProgress[rootStats](ctx, dlog.LogLevelInfo, 1*time.Second)
+ numAdded := 0
+ numReplaced := 0
+ progress := func(done int) {
+ progressWriter.Set(rootStats{
+ TreeID: treeID,
+ RootNode: rootNode,
+ DoneLeafs: done,
+ TotalLeafs: len(tree.leafToRoots),
+ AddedItems: numAdded,
+ ReplacedItems: numReplaced,
+ })
+ }
+ for i, leaf := range maps.SortedKeys(tree.leafToRoots) {
+ progress(i)
+ if tree.Leafs.Has(leaf) || !tree.leafToRoots[leaf].Has(rootNode) {
+ continue
+ }
+ tree.Leafs.Insert(leaf)
+ for j, itemKey := range ts.graph.Nodes[leaf].Items {
+ newPtr := keyio.ItemPtr{
+ Node: leaf,
+ Idx: j,
+ }
+ if oldPtr, exists := tree.Items.Load(itemKey); !exists {
+ tree.Items.Store(itemKey, newPtr)
+ numAdded++
+ } else if tree.shouldReplace(ts.graph, oldPtr.Node, newPtr.Node) {
+ tree.Items.Store(itemKey, newPtr)
+ numReplaced++
+ }
+ ts.cbAddedItem(ctx, treeID, itemKey)
+ progress(i)
+ }
+ }
+ progress(len(tree.leafToRoots))
+ progressWriter.Done()
+}
+
+// AddTree initializes the given tree, returning true if it was able
+// to do so, or false if there was a problem and nothing was done.
+// The tree is initialized with the normal root node of the tree.
+//
+// Subsequent calls to AddTree for the same tree are no-ops.
+func (ts *RebuiltTrees) AddTree(ctx context.Context, treeID btrfsprim.ObjID) (ok bool) {
+ return ts.addTree(ctx, treeID, nil)
+}
+
+func (ts *RebuiltTrees) addTree(ctx context.Context, treeID btrfsprim.ObjID, stack []btrfsprim.ObjID) (ok bool) {
+ if _, ok := ts.trees[treeID]; ok {
+ return true
+ }
+ if slices.Contains(treeID, stack) {
+ return false
+ }
+
+ tree := &rebuiltTree{
+ ID: treeID,
+ Roots: make(containers.Set[btrfsvol.LogicalAddr]),
+ Leafs: make(containers.Set[btrfsvol.LogicalAddr]),
+ }
+ var root btrfsvol.LogicalAddr
+ switch treeID {
+ case btrfsprim.ROOT_TREE_OBJECTID:
+ root = ts.sb.RootTree
+ case btrfsprim.CHUNK_TREE_OBJECTID:
+ root = ts.sb.ChunkTree
+ case btrfsprim.TREE_LOG_OBJECTID:
+ root = ts.sb.LogTree
+ case btrfsprim.BLOCK_GROUP_TREE_OBJECTID:
+ root = ts.sb.BlockGroupRoot
+ default:
+ stack := append(stack, treeID)
+ if !ts.addTree(ctx, btrfsprim.ROOT_TREE_OBJECTID, stack) {
+ return false
+ }
+ rootOff, rootItem, ok := ts.cbLookupRoot(ctx, treeID)
+ if !ok {
+ return false
+ }
+ root = rootItem.ByteNr
+ tree.UUID = rootItem.UUID
+ if rootItem.ParentUUID != (btrfsprim.UUID{}) {
+ tree.ParentGen = rootOff
+ if !ts.addTree(ctx, btrfsprim.ROOT_TREE_OBJECTID, stack) {
+ return false
+ }
+ parentID, ok := ts.cbLookupUUID(ctx, rootItem.ParentUUID)
+ if !ok {
+ return false
+ }
+ if !ts.addTree(ctx, parentID, append(stack, treeID)) {
+ return false
+ }
+ tree.Parent = ts.trees[parentID]
+ }
+ }
+ tree.indexLeafs(ctx, ts.graph)
+
+ ts.trees[treeID] = tree
+ if root != 0 {
+ ts.AddRoot(ctx, treeID, root)
+ }
+
+ return true
+}
+
+type indexStats struct {
+ TreeID btrfsprim.ObjID
+ DoneNodes int
+ TotalNodes int
+}
+
+func (s indexStats) String() string {
+ return fmt.Sprintf("tree %v: indexing leaf nodes: %v%% (%v/%v)",
+ s.TreeID,
+ int(100*float64(s.DoneNodes)/float64(s.TotalNodes)),
+ s.DoneNodes, s.TotalNodes)
+}
+
+func (tree *rebuiltTree) indexLeafs(ctx context.Context, graph pkggraph.Graph) {
+ nodeToRoots := make(map[btrfsvol.LogicalAddr]containers.Set[btrfsvol.LogicalAddr])
+ progressWriter := textui.NewProgress[indexStats](ctx, dlog.LogLevelInfo, 1*time.Second)
+ progress := func() {
+ progressWriter.Set(indexStats{
+ TreeID: tree.ID,
+ DoneNodes: len(nodeToRoots),
+ TotalNodes: len(graph.Nodes),
+ })
+ }
+ progress()
+ for _, node := range maps.SortedKeys(graph.Nodes) {
+ tree.indexNode(graph, node, nodeToRoots, progress, nil)
+ }
+ progressWriter.Done()
+
+ tree.leafToRoots = make(map[btrfsvol.LogicalAddr]containers.Set[btrfsvol.LogicalAddr])
+ for node, roots := range nodeToRoots {
+ if graph.Nodes[node].Level == 0 && len(roots) > 0 {
+ tree.leafToRoots[node] = roots
+ }
+ }
+}
+
+func (tree *rebuiltTree) indexNode(graph pkggraph.Graph, node btrfsvol.LogicalAddr, index map[btrfsvol.LogicalAddr]containers.Set[btrfsvol.LogicalAddr], progress func(), stack []btrfsvol.LogicalAddr) {
+ defer progress()
+ if _, done := index[node]; done {
+ return
+ }
+ if slices.Contains(node, stack) {
+ panic("loop")
+ }
+ if !tree.isOwnerOK(graph.Nodes[node].Owner, graph.Nodes[node].Generation) {
+ index[node] = nil
+ return
+ }
+
+ // tree.leafToRoots
+ stack = append(stack, node)
+ var roots containers.Set[btrfsvol.LogicalAddr]
+ kps := slices.RemoveAllFunc(graph.EdgesTo[node], func(kp *pkggraph.Edge) bool {
+ return !tree.isOwnerOK(graph.Nodes[kp.FromNode].Owner, graph.Nodes[kp.FromNode].Generation)
+ })
+ for _, kp := range kps {
+ tree.indexNode(graph, kp.FromNode, index, progress, stack)
+ if len(index[kp.FromNode]) > 0 {
+ if roots == nil {
+ roots = make(containers.Set[btrfsvol.LogicalAddr])
+ }
+ roots.InsertFrom(index[kp.FromNode])
+ }
+ }
+ if roots == nil {
+ roots = containers.NewSet[btrfsvol.LogicalAddr](node)
+ }
+ index[node] = roots
+
+ // tree.keys
+ for i, key := range graph.Nodes[node].Items {
+ if oldPtr, ok := tree.keys.Load(key); !ok || tree.shouldReplace(graph, oldPtr.Node, node) {
+ tree.keys.Store(key, keyio.ItemPtr{
+ Node: node,
+ Idx: i,
+ })
+ }
+ }
+}
+
+// Load reads an item from a tree.
+//
+// It is not nescessary to call AddTree for that tree first; Load will
+// call it for you.
+func (ts *RebuiltTrees) Load(ctx context.Context, treeID btrfsprim.ObjID, key btrfsprim.Key) (item btrfsitem.Item, ok bool) {
+ if !ts.AddTree(ctx, treeID) {
+ return nil, false
+ }
+ ptr, ok := ts.trees[treeID].Items.Load(key)
+ if !ok {
+ return nil, false
+ }
+ return ts.keyIO.ReadItem(ptr)
+}
+
+// Search searches for an item from a tree.
+//
+// It is not nescessary to call AddTree for that tree first; Search
+// will call it for you.
+func (ts *RebuiltTrees) Search(ctx context.Context, treeID btrfsprim.ObjID, fn func(btrfsprim.Key) int) (key btrfsprim.Key, ok bool) {
+ if !ts.AddTree(ctx, treeID) {
+ return btrfsprim.Key{}, false
+ }
+ k, _, ok := ts.trees[treeID].Items.Search(func(k btrfsprim.Key, _ keyio.ItemPtr) int {
+ return fn(k)
+ })
+ return k, ok
+}
+
+// Search searches for a range of items from a tree.
+//
+// It is not nescessary to call AddTree for that tree first; SearchAll
+// will call it for you.
+func (ts *RebuiltTrees) SearchAll(ctx context.Context, treeID btrfsprim.ObjID, fn func(btrfsprim.Key) int) []btrfsprim.Key {
+ if !ts.AddTree(ctx, treeID) {
+ return nil
+ }
+ kvs := ts.trees[treeID].Items.SearchAll(func(k btrfsprim.Key, _ keyio.ItemPtr) int {
+ return fn(k)
+ })
+ if len(kvs) == 0 {
+ return nil
+ }
+ ret := make([]btrfsprim.Key, len(kvs))
+ for i := range kvs {
+ ret[i] = kvs[i].K
+ }
+ return ret
+}
+
+// LeafToRoots returns the list of potential roots (to pass to
+// .AddRoot) that include a given leaf-node.
+//
+// It is not nescessary to call AddTree for the tree first;
+// LeafToRoots will call it for you.
+func (ts *RebuiltTrees) LeafToRoots(ctx context.Context, treeID btrfsprim.ObjID, leaf btrfsvol.LogicalAddr) containers.Set[btrfsvol.LogicalAddr] {
+ if !ts.AddTree(ctx, treeID) {
+ return nil
+ }
+ if ts.graph.Nodes[leaf].Level != 0 {
+ panic(fmt.Errorf("should not happen: NodeToRoots(tree=%v, leaf=%v): not a leaf",
+ treeID, leaf))
+ }
+ ret := make(containers.Set[btrfsvol.LogicalAddr])
+ for root := range ts.trees[treeID].leafToRoots[leaf] {
+ if ts.trees[treeID].Roots.Has(root) {
+ panic(fmt.Errorf("should not happen: NodeToRoots(tree=%v, leaf=%v): tree contains root=%v but not leaf",
+ treeID, leaf, root))
+ }
+ ret.Insert(root)
+ }
+ if len(ret) == 0 {
+ return nil
+ }
+ return ret
+}
+
+// Keys returns a map of all keys in node that would be valid in this tree.
+//
+// It is invalid (panic) to call Keys for a tree without having called
+// AddTree first.
+func (ts *RebuiltTrees) Keys(treeID btrfsprim.ObjID) *containers.SortedMap[btrfsprim.Key, keyio.ItemPtr] {
+ return &ts.trees[treeID].keys
+}
+
+// COWDistance returns how many COW-snapshots down from the 'child'
+// tree is from the 'parent' tree.
+//
+// It is invalid (panic) to call COWDistance for a tree without having
+// called AddTree for the child first.
+func (ts *RebuiltTrees) COWDistance(ctx context.Context, childID, parentID btrfsprim.ObjID) (dist int, ok bool) {
+ return ts.trees[childID].cowDistance(parentID)
+}
+
+// ListRoots returns a listing of all initialized trees and their root
+// nodes.
+//
+// Do not mutate the set of roots for a tree; it is a pointer to the
+// RebuiltTrees' internal set!
+func (ts *RebuiltTrees) ListRoots() map[btrfsprim.ObjID]containers.Set[btrfsvol.LogicalAddr] {
+ ret := make(map[btrfsprim.ObjID]containers.Set[btrfsvol.LogicalAddr], len(ts.trees))
+ for treeID := range ts.trees {
+ ret[treeID] = ts.trees[treeID].Roots
+ }
+ return ret
+}