summaryrefslogtreecommitdiff
path: root/cmd/btrfs-rec/inspect/rebuildmappings/process_sums_logical.go
blob: 52f8252c1a8b7b9dd9b7989afed5ac2b582609b7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
// Copyright (C) 2022-2023  Luke Shumaker <lukeshu@lukeshu.com>
//
// SPDX-License-Identifier: GPL-2.0-or-later

package rebuildmappings

import (
	"context"
	"sort"
	"strings"

	"github.com/datawire/dlib/dlog"

	"git.lukeshu.com/btrfs-progs-ng/lib/btrfs"
	"git.lukeshu.com/btrfs-progs-ng/lib/btrfs/btrfsitem"
	"git.lukeshu.com/btrfs-progs-ng/lib/btrfs/btrfssum"
	"git.lukeshu.com/btrfs-progs-ng/lib/btrfs/btrfsvol"
	"git.lukeshu.com/btrfs-progs-ng/lib/containers"
	"git.lukeshu.com/btrfs-progs-ng/lib/slices"
)

func extractLogicalSums(ctx context.Context, scanResults ScanDevicesResult) sumRunWithGaps[btrfsvol.LogicalAddr] {
	var records []FoundExtentCSum
	for _, devResults := range scanResults {
		records = append(records, devResults.FoundExtentCSums...)
	}
	// Sort lower-generation items earlier; then sort by addr.
	sort.Slice(records, func(i, j int) bool {
		a, b := records[i], records[j]
		switch {
		case a.Generation < b.Generation:
			return true
		case a.Generation > b.Generation:
			return false
		default:
			return a.Sums.Addr < b.Sums.Addr
		}
	})
	if len(records) == 0 {
		return sumRunWithGaps[btrfsvol.LogicalAddr]{}
	}
	sumSize := records[0].Sums.ChecksumSize

	// Now build them in to a coherent address space.
	//
	// We can't just reverse-sort by generation to avoid mutations, because given
	//
	//	gen1 AAAAAAA
	//      gen2    BBBBBBBB
	//      gen3          CCCCCCC
	//
	// "AAAAAAA" shouldn't be present, and if we just discard "BBBBBBBB"
	// because it conflicts with "CCCCCCC", then we would erroneously
	// include "AAAAAAA".
	addrspace := new(containers.RBTree[FoundExtentCSum])
	for _, newRecord := range records {
		for {
			conflict := addrspace.Search(func(oldRecord FoundExtentCSum) int {
				switch {
				case newRecord.Sums.Addr.Add(newRecord.Sums.Size()) <= oldRecord.Sums.Addr:
					// 'newRecord' is wholly to the left of 'oldRecord'.
					return -1
				case oldRecord.Sums.Addr.Add(oldRecord.Sums.Size()) <= newRecord.Sums.Addr:
					// 'oldRecord' is wholly to the left of 'newRecord'.
					return 1
				default:
					// There is some overlap.
					return 0
				}
			})
			if conflict == nil {
				// We can insert it
				addrspace.Insert(newRecord)
				break
			}
			oldRecord := conflict.Value
			if oldRecord == newRecord {
				// Duplicates are to be expected.
				break
			}
			if oldRecord.Generation < newRecord.Generation {
				// Newer generation wins.
				addrspace.Delete(conflict)
				// loop around to check for more conflicts
				continue
			}
			if oldRecord.Generation > newRecord.Generation {
				// We sorted them!  This shouldn't happen.
				panic("should not happen")
			}
			// Since sums are stored multiple times (RAID?), but may
			// be split between items differently between copies, we
			// should take the union (after verifying that they
			// agree on the overlapping part).
			overlapBeg := slices.Max(
				oldRecord.Sums.Addr,
				newRecord.Sums.Addr)
			overlapEnd := slices.Min(
				oldRecord.Sums.Addr.Add(oldRecord.Sums.Size()),
				newRecord.Sums.Addr.Add(newRecord.Sums.Size()))

			oldOverlapBeg := int(overlapBeg.Sub(oldRecord.Sums.Addr)/btrfssum.BlockSize) * sumSize
			oldOverlapEnd := int(overlapEnd.Sub(oldRecord.Sums.Addr)/btrfssum.BlockSize) * sumSize
			oldOverlap := oldRecord.Sums.Sums[oldOverlapBeg:oldOverlapEnd]

			newOverlapBeg := int(overlapBeg.Sub(newRecord.Sums.Addr)/btrfssum.BlockSize) * sumSize
			newOverlapEnd := int(overlapEnd.Sub(newRecord.Sums.Addr)/btrfssum.BlockSize) * sumSize
			newOverlap := newRecord.Sums.Sums[newOverlapBeg:newOverlapEnd]

			if oldOverlap != newOverlap {
				dlog.Errorf(ctx, "mismatch: {gen:%v, addr:%v, size:%v} conflicts with {gen:%v, addr:%v, size:%v}",
					oldRecord.Generation, oldRecord.Sums.Addr, oldRecord.Sums.Size(),
					newRecord.Generation, newRecord.Sums.Addr, newRecord.Sums.Size())
				break
			}
			// OK, we match, so take the union.
			var prefix, suffix btrfssum.ShortSum
			switch {
			case oldRecord.Sums.Addr < overlapBeg:
				prefix = oldRecord.Sums.Sums[:oldOverlapBeg]
			case newRecord.Sums.Addr < overlapBeg:
				prefix = newRecord.Sums.Sums[:newOverlapBeg]
			}
			switch {
			case oldRecord.Sums.Addr.Add(oldRecord.Sums.Size()) > overlapEnd:
				suffix = oldRecord.Sums.Sums[oldOverlapEnd:]
			case newRecord.Sums.Addr.Add(newRecord.Sums.Size()) > overlapEnd:
				suffix = newRecord.Sums.Sums[newOverlapEnd:]
			}
			unionRecord := FoundExtentCSum{
				Generation: oldRecord.Generation,
				Sums: btrfsitem.ExtentCSum{
					SumRun: btrfssum.SumRun[btrfsvol.LogicalAddr]{
						ChecksumSize: oldRecord.Sums.ChecksumSize,
						Addr:         slices.Min(oldRecord.Sums.Addr, newRecord.Sums.Addr),
						Sums:         prefix + oldOverlap + suffix,
					},
				},
			}
			addrspace.Delete(conflict)
			newRecord = unionRecord
			// loop around to check for more conflicts
		}
	}

	// Now flatten that RBTree in to a sumRunWithGaps.
	var flattened sumRunWithGaps[btrfsvol.LogicalAddr]
	var curAddr btrfsvol.LogicalAddr
	var curSums strings.Builder
	addrspace.Range(func(node *containers.RBNode[FoundExtentCSum]) bool {
		curEnd := curAddr + (btrfsvol.LogicalAddr(curSums.Len()/sumSize) * btrfssum.BlockSize)
		if node.Value.Sums.Addr != curEnd {
			if curSums.Len() > 0 {
				flattened.Runs = append(flattened.Runs, btrfssum.SumRun[btrfsvol.LogicalAddr]{
					ChecksumSize: sumSize,
					Addr:         curAddr,
					Sums:         btrfssum.ShortSum(curSums.String()),
				})
			}
			curAddr = node.Value.Sums.Addr
			curSums.Reset()
		}
		curSums.WriteString(string(node.Value.Sums.Sums))
		return true
	})
	if curSums.Len() > 0 {
		flattened.Runs = append(flattened.Runs, btrfssum.SumRun[btrfsvol.LogicalAddr]{
			ChecksumSize: sumSize,
			Addr:         curAddr,
			Sums:         btrfssum.ShortSum(curSums.String()),
		})
	}
	flattened.Addr = flattened.Runs[0].Addr
	last := flattened.Runs[len(flattened.Runs)-1]
	end := last.Addr.Add(last.Size())
	flattened.Size = end.Sub(flattened.Addr)

	return flattened
}

func listUnmappedLogicalRegions(fs *btrfs.FS, logicalSums sumRunWithGaps[btrfsvol.LogicalAddr]) []btrfssum.SumRun[btrfsvol.LogicalAddr] {
	// There are a lot of ways this algorithm could be made
	// faster.
	var ret []btrfssum.SumRun[btrfsvol.LogicalAddr]
	var cur struct {
		Addr btrfsvol.LogicalAddr
		Size btrfsvol.AddrDelta
	}
	for _, run := range logicalSums.Runs {
		for addr := run.Addr; addr < run.Addr.Add(run.Size()); addr += btrfssum.BlockSize {
			if _, maxlen := fs.LV.Resolve(addr); maxlen < btrfssum.BlockSize {
				if cur.Size == 0 {
					cur.Addr = addr
					cur.Size = 0
				}
				cur.Size += btrfssum.BlockSize
			} else if cur.Size > 0 {
				begIdx := int(cur.Addr.Sub(run.Addr)/btrfssum.BlockSize) * run.ChecksumSize
				lenIdx := (int(cur.Size) / btrfssum.BlockSize) * run.ChecksumSize
				endIdx := begIdx + lenIdx
				ret = append(ret, btrfssum.SumRun[btrfsvol.LogicalAddr]{
					ChecksumSize: run.ChecksumSize,
					Addr:         cur.Addr,
					Sums:         run.Sums[begIdx:endIdx],
				})
				cur.Size = 0
			}
		}
		if cur.Size > 0 {
			begIdx := int(cur.Addr.Sub(run.Addr)/btrfssum.BlockSize) * run.ChecksumSize
			lenIdx := (int(cur.Size) / btrfssum.BlockSize) * run.ChecksumSize
			endIdx := begIdx + lenIdx
			ret = append(ret, btrfssum.SumRun[btrfsvol.LogicalAddr]{
				ChecksumSize: run.ChecksumSize,
				Addr:         cur.Addr,
				Sums:         run.Sums[begIdx:endIdx],
			})
			cur.Size = 0
		}
	}
	return ret
}

func sumsForLogicalRegion(sums sumRunWithGaps[btrfsvol.LogicalAddr], beg btrfsvol.LogicalAddr, size btrfsvol.AddrDelta) sumRunWithGaps[btrfsvol.LogicalAddr] {
	runs := sumRunWithGaps[btrfsvol.LogicalAddr]{
		Addr: beg,
		Size: size,
	}
	for laddr := beg; laddr < beg.Add(size); {
		run, next, ok := sums.RunForAddr(laddr)
		if !ok {
			laddr = next
			continue
		}
		off := int((laddr-run.Addr)/btrfssum.BlockSize) * run.ChecksumSize
		deltaAddr := slices.Min[btrfsvol.AddrDelta](
			size-laddr.Sub(beg),
			btrfsvol.AddrDelta((len(run.Sums)-off)/run.ChecksumSize)*btrfssum.BlockSize)
		deltaOff := int(deltaAddr/btrfssum.BlockSize) * run.ChecksumSize
		runs.Runs = append(runs.Runs, btrfssum.SumRun[btrfsvol.LogicalAddr]{
			ChecksumSize: run.ChecksumSize,
			Addr:         laddr,
			Sums:         run.Sums[off : off+deltaOff],
		})
		laddr = laddr.Add(deltaAddr)
	}
	return runs
}