// Copyright (C) 2022 Luke Shumaker // // SPDX-License-Identifier: GPL-2.0-or-later package rbtree import ( "fmt" "golang.org/x/exp/constraints" ) type Color bool const ( Black = Color(false) Red = Color(true) ) type Node[V any] struct { Parent, Left, Right *Node[V] Color Color Value V } func (node *Node[V]) getColor() Color { if node == nil { return Black } return node.Color } type Tree[K constraints.Ordered, V any] struct { KeyFn func(V) K root *Node[V] } func (t *Tree[K, V]) Walk(fn func(*Node[V]) error) error { return t.root.walk(fn) } func (node *Node[V]) walk(fn func(*Node[V]) error) error { if node == nil { return nil } if err := node.Left.walk(fn); err != nil { return err } if err := fn(node); err != nil { return err } if err := node.Right.walk(fn); err != nil { return err } return nil } // Search the tree for a value that satisfied the given callbackk // function. A return value of 0 means to to return this value; <0 // means to go left on the tree (the value is too high), >0 means to // go right on th etree (the value is too low). // // +-----+ // | v=8 | == 0 : this is it // +-----+ // / \ // / \ // <0 : go left >0 : go right // / \ // +---+ +---+ // | 7 | | 9 | // +---+ +---+ // // Returns nil if no such value is found. // // Search is good for advanced lookup, like when a range of values is // acceptable. For simple exact-value lookup, use Lookup. func (t *Tree[K, V]) Search(fn func(V) int) *Node[V] { ret, _ := t.root.search(fn) return ret } func (node *Node[V]) search(fn func(V) int) (exact, nearest *Node[V]) { var prev *Node[V] for { if node == nil { return nil, prev } direction := fn(node.Value) prev = node switch { case direction < 0: node = node.Left case direction == 0: return node, nil case direction > 0: node = node.Right } } } func (t *Tree[K, V]) exactKey(key K) func(V) int { return func(val V) int { valKey := t.KeyFn(val) switch { case key < valKey: return -1 case key > valKey: return 1 default: // key == valKey: return 0 } } } // Lookup looks up the value for an exact key. If no such value // exists, nil is returned. func (t *Tree[K, V]) Lookup(key K) *Node[V] { return t.Search(t.exactKey(key)) } // Min returns the minimum value stored in the tree, or nil if the // tree is empty. func (t *Tree[K, V]) Min() *Node[V] { return t.root.min() } func (node *Node[V]) min() *Node[V] { if node == nil { return nil } for { if node.Left == nil { return node } node = node.Left } } // Max returns the maximum value stored in the tree, or nil if the // tree is empty. func (t *Tree[K, V]) Max() *Node[V] { return t.root.max() } func (node *Node[V]) max() *Node[V] { if node == nil { return nil } for { if node.Right == nil { return node } node = node.Right } } func (t *Tree[K, V]) Next(cur *Node[V]) *Node[V] { return cur.next() } func (cur *Node[V]) next() *Node[V] { if cur.Right != nil { return cur.Right.min() } child, parent := cur, cur.Parent for parent != nil && child == parent.Right { child, parent = parent, parent.Parent } return parent } func (t *Tree[K, V]) Prev(cur *Node[V]) *Node[V] { return cur.prev() } func (cur *Node[V]) prev() *Node[V] { if cur.Left != nil { return cur.Left.max() } child, parent := cur, cur.Parent for parent != nil && child == parent.Left { child, parent = parent, parent.Parent } return parent } func (t *Tree[K, V]) parentChild(node *Node[V]) **Node[V] { switch { case node.Parent == nil: return &t.root case node.Parent.Left == node: return &node.Parent.Left case node.Parent.Right == node: return &node.Parent.Right default: panic(fmt.Errorf("node %p is not a child of its parent %p", node, node.Parent)) } } func (t *Tree[K, V]) leftRotate(x *Node[V]) { // p p // | | // +---+ +---+ // | x | | y | // +---+ +---+ // / \ => / \ // a +---+ +---+ c // | y | | x | // +---+ +---+ // / \ / \ // b c a b // Define 'p', 'x', 'y', and 'b' per the above diagram. p := x.Parent pChild := t.parentChild(x) y := x.Right b := y.Left // Move things around y.Parent = p *pChild = y x.Parent = y y.Left = x if b != nil { b.Parent = x } x.Right = b } func (t *Tree[K, V]) rightRotate(y *Node[V]) { // | | // +---+ +---+ // | y | | x | // +---+ +---+ // / \ => / \ // +---+ c a +---+ // | x | | y | // +---+ +---+ // / \ / \ // a b b c // Define 'p', 'x', 'y', and 'b' per the above diagram. p := y.Parent pChild := t.parentChild(y) x := y.Left b := x.Right // Move things around x.Parent = p *pChild = x y.Parent = x x.Right = y if b != nil { b.Parent = y } y.Left = b } func (t *Tree[K, V]) Insert(val V) { // Naive-insert key := t.KeyFn(val) exact, parent := t.root.search(t.exactKey(key)) if exact != nil { exact.Value = val return } node := &Node[V]{ Color: Red, Parent: parent, Value: val, } if parent == nil { t.root = node } else if key < t.KeyFn(parent.Value) { parent.Left = node } else { parent.Right = node } // Re-balance // // This is closely based on the algorithm presented in CLRS // 3e. for node.Parent.getColor() == Red { if node.Parent == node.Parent.Parent.Left { uncle := node.Parent.Parent.Right if uncle.getColor() == Red { node.Parent.Color = Black uncle.Color = Black node.Parent.Parent.Color = Red node = node.Parent.Parent } else { if node == node.Parent.Right { node = node.Parent t.leftRotate(node) } node.Parent.Color = Black node.Parent.Parent.Color = Red t.rightRotate(node.Parent.Parent) } } else { uncle := node.Parent.Parent.Left if uncle.getColor() == Red { node.Parent.Color = Black uncle.Color = Black node.Parent.Parent.Color = Red node = node.Parent.Parent } else { if node == node.Parent.Left { node = node.Parent t.rightRotate(node) } node.Parent.Color = Black node.Parent.Parent.Color = Red t.leftRotate(node.Parent.Parent) } } } t.root.Color = Black } func (t *Tree[K, V]) transplant(old, new *Node[V]) { *t.parentChild(old) = new if new != nil { new.Parent = old.Parent } } func (t *Tree[K, V]) Delete(key K) { nodeToDelete := t.Lookup(key) if nodeToDelete == nil { return } // This is closely based on the algorithm presented in CLRS // 3e. var nodeToRebalance *Node[V] var nodeToRebalanceParent *Node[V] // in case 'nodeToRebalance' is nil, which it can be needsRebalance := nodeToDelete.Color == Black switch { case nodeToDelete.Left == nil: nodeToRebalance = nodeToDelete.Right nodeToRebalanceParent = nodeToDelete.Parent t.transplant(nodeToDelete, nodeToDelete.Right) case nodeToDelete.Right == nil: nodeToRebalance = nodeToDelete.Left nodeToRebalanceParent = nodeToDelete.Parent t.transplant(nodeToDelete, nodeToDelete.Left) default: // The node being deleted has a child on both sides, // so we've go to reshuffle the parents a bit to make // room for those children. next := nodeToDelete.next() if next.Parent == nodeToDelete { // p p // | | // +-----+ +-----+ // | ntd | | nxt | // +-----+ +-----+ // / \ => / \ // a +-----+ a b // | nxt | // +-----+ // / \ // nil b nodeToRebalance = next.Right nodeToRebalanceParent = next *t.parentChild(nodeToDelete) = next next.Parent = nodeToDelete.Parent next.Left = nodeToDelete.Left next.Left.Parent = next } else { // p p // | | // +-----+ +-----+ // | ntd | | nxt | // +-----+ +-----+ // / \ / \ // a x a x // / \ => / \ // y z y z // / \ / \ // +-----+ c b c // | nxt | // +-----+ // / \ // nil b y := next.Parent b := next.Right nodeToRebalance = b nodeToRebalanceParent = y *t.parentChild(nodeToDelete) = next next.Parent = nodeToDelete.Parent next.Left = nodeToDelete.Left next.Left.Parent = next next.Right = nodeToDelete.Right next.Right.Parent = next y.Left = b if b != nil { b.Parent = y } } // idk needsRebalance = next.Color == Black next.Color = nodeToDelete.Color } if needsRebalance { node := nodeToRebalance nodeParent := nodeToRebalanceParent for node != t.root && node.getColor() == Black { if node == nodeParent.Left { sibling := nodeParent.Right if sibling.getColor() == Red { sibling.Color = Black nodeParent.Color = Red t.leftRotate(nodeParent) sibling = nodeParent.Right } if sibling.Left.getColor() == Black && sibling.Right.getColor() == Black { sibling.Color = Red node, nodeParent = nodeParent, nodeParent.Parent } else { if sibling.Right.getColor() == Black { sibling.Left.Color = Black sibling.Color = Red t.rightRotate(sibling) sibling = nodeParent.Right } sibling.Color = nodeParent.Color nodeParent.Color = Black sibling.Right.Color = Black t.leftRotate(nodeParent) node, nodeParent = t.root, nil } } else { sibling := nodeParent.Left if sibling.getColor() == Red { sibling.Color = Black nodeParent.Color = Red t.rightRotate(nodeParent) sibling = nodeParent.Left } if sibling.Right.getColor() == Black && sibling.Left.getColor() == Black { sibling.Color = Red node, nodeParent = nodeParent, nodeParent.Parent } else { if sibling.Left.getColor() == Black { sibling.Right.Color = Black sibling.Color = Red t.leftRotate(sibling) sibling = nodeParent.Left } sibling.Color = nodeParent.Color nodeParent.Color = Black sibling.Left.Color = Black t.rightRotate(nodeParent) node, nodeParent = t.root, nil } } } if node != nil { node.Color = Black } } }