// Copyright (C) 2022-2023 Luke Shumaker // // SPDX-License-Identifier: GPL-2.0-or-later package btrfsutil import ( "context" "sync" "github.com/datawire/dlib/dlog" "git.lukeshu.com/btrfs-progs-ng/lib/btrfs/btrfsitem" "git.lukeshu.com/btrfs-progs-ng/lib/btrfs/btrfsprim" "git.lukeshu.com/btrfs-progs-ng/lib/btrfs/btrfstree" "git.lukeshu.com/btrfs-progs-ng/lib/btrfs/btrfsvol" "git.lukeshu.com/btrfs-progs-ng/lib/containers" "git.lukeshu.com/btrfs-progs-ng/lib/diskio" "git.lukeshu.com/btrfs-progs-ng/lib/slices" "git.lukeshu.com/btrfs-progs-ng/lib/textui" ) type RebuiltForrestCallbacks interface { AddedItem(ctx context.Context, tree btrfsprim.ObjID, key btrfsprim.Key) AddedRoot(ctx context.Context, tree btrfsprim.ObjID, root btrfsvol.LogicalAddr) LookupRoot(ctx context.Context, tree btrfsprim.ObjID) (offset btrfsprim.Generation, item btrfsitem.Root, ok bool) LookupUUID(ctx context.Context, uuid btrfsprim.UUID) (id btrfsprim.ObjID, ok bool) } // RebuiltForrest is an abstraction for rebuilding and accessing // potentially broken btrees. // // It is conceptually a btrfstree.TreeOperator, and adds similar // broken-tree handling to OldRebuiltForrest. However, the API is // different than btrfstree.TreeOperator, and is much more efficient // than OldRebuiltForrest. // // The efficiency improvements are possible because of the API // differences, which are necessary for how it is used in // rebuildtrees: // // - it consumes an already-read Graph instead of reading the graph // itself // // - it does not use `btrfstree.Path` // // - it does not keep track of errors encountered in a tree // // Additionally, it provides some functionality that OldRebuiltForrest // does not: // // - it provides a .LeafToRoots() method to advise on what // additional roots should be added // // - it provides a .COWDistance() method to compare how related two // trees are // // A zero RebuiltForrest is invalid; it must be initialized with // NewRebuiltForrest(). type RebuiltForrest struct { // static file diskio.File[btrfsvol.LogicalAddr] sb btrfstree.Superblock graph Graph cb RebuiltForrestCallbacks // mutable treesMu nestedMutex trees map[btrfsprim.ObjID]*RebuiltTree // must hold .treesMu to access leafs containers.ARCache[btrfsprim.ObjID, map[btrfsvol.LogicalAddr]containers.Set[btrfsvol.LogicalAddr]] incItems containers.ARCache[btrfsprim.ObjID, *itemIndex] excItems containers.ARCache[btrfsprim.ObjID, *itemIndex] nodesMu sync.Mutex nodes containers.ARCache[btrfsvol.LogicalAddr, *btrfstree.Node] } // NewRebuiltForrest returns a new RebuiltForrest instance. All of // the callbacks must be non-nil. func NewRebuiltForrest(file diskio.File[btrfsvol.LogicalAddr], sb btrfstree.Superblock, graph Graph, cb RebuiltForrestCallbacks) *RebuiltForrest { return &RebuiltForrest{ file: file, sb: sb, graph: graph, cb: cb, trees: make(map[btrfsprim.ObjID]*RebuiltTree), leafs: containers.ARCache[btrfsprim.ObjID, map[btrfsvol.LogicalAddr]containers.Set[btrfsvol.LogicalAddr]]{ MaxLen: textui.Tunable(8), }, incItems: containers.ARCache[btrfsprim.ObjID, *itemIndex]{ MaxLen: textui.Tunable(8), }, excItems: containers.ARCache[btrfsprim.ObjID, *itemIndex]{ MaxLen: textui.Tunable(8), }, nodes: containers.ARCache[btrfsvol.LogicalAddr, *btrfstree.Node]{ MaxLen: textui.Tunable(8), OnRemove: func(_ btrfsvol.LogicalAddr, node *btrfstree.Node) { node.Free() }, }, } } // Tree returns a given tree, initializing it if nescessary. If it is // unable to initialize the tree, then nil is returned, and nothing is // done to the forrest. // // The tree is initialized with the normal root node of the tree. func (ts *RebuiltForrest) Tree(ctx context.Context, treeID btrfsprim.ObjID) *RebuiltTree { ctx = ts.treesMu.Lock(ctx) defer ts.treesMu.Unlock() if !ts.addTree(ctx, treeID, nil) { return nil } return ts.trees[treeID] } func (ts *RebuiltForrest) addTree(ctx context.Context, treeID btrfsprim.ObjID, stack []btrfsprim.ObjID) (ok bool) { if tree, ok := ts.trees[treeID]; ok { return tree != nil } defer func() { if !ok { // Store a negative cache of this. tree.AddRoot() for the ROOT or UUID // trees will call .flushNegativeCache(). ts.trees[treeID] = nil } }() stack = append(stack, treeID) ctx = dlog.WithField(ctx, "btrfs.util.rebuilt-forrest.add-tree", stack) dlog.Info(ctx, "adding tree...") if slices.Contains(treeID, stack[:len(stack)-1]) { dlog.Errorf(ctx, "failed to add tree: loop detected: %v", stack) return false } tree := &RebuiltTree{ ID: treeID, Roots: make(containers.Set[btrfsvol.LogicalAddr]), forrest: ts, } var root btrfsvol.LogicalAddr switch treeID { case btrfsprim.ROOT_TREE_OBJECTID: root = ts.sb.RootTree case btrfsprim.CHUNK_TREE_OBJECTID: root = ts.sb.ChunkTree case btrfsprim.TREE_LOG_OBJECTID: root = ts.sb.LogTree case btrfsprim.BLOCK_GROUP_TREE_OBJECTID: root = ts.sb.BlockGroupRoot default: if !ts.addTree(ctx, btrfsprim.ROOT_TREE_OBJECTID, stack) { dlog.Error(ctx, "failed to add tree: add ROOT_TREE") return false } rootOff, rootItem, ok := ts.cb.LookupRoot(ctx, treeID) if !ok { dlog.Error(ctx, "failed to add tree: lookup ROOT_ITEM") return false } root = rootItem.ByteNr tree.UUID = rootItem.UUID if rootItem.ParentUUID != (btrfsprim.UUID{}) { tree.ParentGen = rootOff if !ts.addTree(ctx, btrfsprim.UUID_TREE_OBJECTID, stack) { return false } parentID, ok := ts.cb.LookupUUID(ctx, rootItem.ParentUUID) if !ok { dlog.Error(ctx, "failed to add tree: lookup UUID") return false } if !ts.addTree(ctx, parentID, stack) { dlog.Error(ctx, "failed to add tree: add parent tree") return false } tree.Parent = ts.trees[parentID] } } ts.trees[treeID] = tree if root != 0 { tree.AddRoot(ctx, root) } return true } func (ts *RebuiltForrest) flushNegativeCache(ctx context.Context) { _ = ts.treesMu.Lock(ctx) defer ts.treesMu.Unlock() for treeID, tree := range ts.trees { if tree == nil { delete(ts.trees, treeID) } } } // ListRoots returns a listing of all initialized trees and their root // nodes. // // Do not mutate the set of roots for a tree; it is a pointer to the // RebuiltForrest's internal set! func (ts *RebuiltForrest) ListRoots(ctx context.Context) map[btrfsprim.ObjID]containers.Set[btrfsvol.LogicalAddr] { _ = ts.treesMu.Lock(ctx) defer ts.treesMu.Unlock() ret := make(map[btrfsprim.ObjID]containers.Set[btrfsvol.LogicalAddr]) for treeID, tree := range ts.trees { if tree != nil { ret[treeID] = tree.Roots } } return ret }